20,272 research outputs found

    Non-Cooperative Rational Interactive Proofs

    Get PDF
    Interactive-proof games model the scenario where an honest party interacts with powerful but strategic provers, to elicit from them the correct answer to a computational question. Interactive proofs are increasingly used as a framework to design protocols for computation outsourcing. Existing interactive-proof games largely fall into two categories: either as games of cooperation such as multi-prover interactive proofs and cooperative rational proofs, where the provers work together as a team; or as games of conflict such as refereed games, where the provers directly compete with each other in a zero-sum game. Neither of these extremes truly capture the strategic nature of service providers in outsourcing applications. How to design and analyze non-cooperative interactive proofs is an important open problem. In this paper, we introduce a mechanism-design approach to define a multi-prover interactive-proof model in which the provers are rational and non-cooperative - they act to maximize their expected utility given others\u27 strategies. We define a strong notion of backwards induction as our solution concept to analyze the resulting extensive-form game with imperfect information. We fully characterize the complexity of our proof system under different utility gap guarantees. (At a high level, a utility gap of u means that the protocol is robust against provers that may not care about a utility loss of 1/u.) We show, for example, that the power of non-cooperative rational interactive proofs with a polynomial utility gap is exactly equal to the complexity class P^{NEXP}

    Rational Proofs with Multiple Provers

    Full text link
    Interactive proofs (IP) model a world where a verifier delegates computation to an untrustworthy prover, verifying the prover's claims before accepting them. IP protocols have applications in areas such as verifiable computation outsourcing, computation delegation, cloud computing. In these applications, the verifier may pay the prover based on the quality of his work. Rational interactive proofs (RIP), introduced by Azar and Micali (2012), are an interactive-proof system with payments, in which the prover is rational rather than untrustworthy---he may lie, but only to increase his payment. Rational proofs leverage the provers' rationality to obtain simple and efficient protocols. Azar and Micali show that RIP=IP(=PSAPCE). They leave the question of whether multiple provers are more powerful than a single prover for rational and classical proofs as an open problem. In this paper, we introduce multi-prover rational interactive proofs (MRIP). Here, a verifier cross-checks the provers' answers with each other and pays them according to the messages exchanged. The provers are cooperative and maximize their total expected payment if and only if the verifier learns the correct answer to the problem. We further refine the model of MRIP to incorporate utility gap, which is the loss in payment suffered by provers who mislead the verifier to the wrong answer. We define the class of MRIP protocols with constant, noticeable and negligible utility gaps. We give tight characterization for all three MRIP classes. We show that under standard complexity-theoretic assumptions, MRIP is more powerful than both RIP and MIP ; and this is true even the utility gap is required to be constant. Furthermore the full power of each MRIP class can be achieved using only two provers and three rounds. (A preliminary version of this paper appeared at ITCS 2016. This is the full version that contains new results.)Comment: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. ACM, 201

    Global bifurcation for monotone fronts of elliptic equations

    Full text link
    In this paper, we present two results on global continuation of monotone front-type solutions to elliptic PDEs posed on infinite cylinders. This is done under quite general assumptions, and in particular applies even to fully nonlinear equations as well as quasilinear problems with transmission boundary conditions. Our approach is rooted in the analytic global bifurcation theory of Dancer and Buffoni--Toland, but extending it to unbounded domains requires contending with new potential limiting behavior relating to loss of compactness. We obtain an exhaustive set of alternatives for the global behavior of the solution curve that is sharp, with each possibility having a direct analogue in the bifurcation theory of second-order ODEs. As a major application of the general theory, we construct global families of internal hydrodynamic bores. These are traveling front solutions of the full two-phase Euler equation in two dimensions. The fluids are confined to a channel that is bounded above and below by rigid walls, with incompressible and irrotational flow in each layer. Small-amplitude fronts for this system have been obtained by several authors. We give the first large-amplitude result in the form of continuous curves of elevation and depression bores. Following the elevation curve to its extreme, we find waves whose interfaces either overturn (develop a vertical tangent) or become exceptionally singular in that the flow in both layers degenerates at a single point on the boundary. For the curve of depression waves, we prove that either the interface overturns or it comes into contact with the upper wall.Comment: 60 pages, 6 figure

    Reciprocal anatomical relationship between primary sensory and prefrontal cortices in the human brain

    Get PDF
    The human brain exhibits remarkable interindividual variability in cortical architecture. Despite extensive evidence for the behavioral consequences of such anatomical variability in individual cortical regions, it is unclear whether and how different cortical regions covary in morphology. Using a novel approach that combined noninvasive cortical functional mapping with whole-brain voxel-based morphometric analyses, we investigated the anatomical relationship between the functionally mapped visual cortices and other cortical structures in healthy humans. We found a striking anticorrelation between the gray matter volume of primary visual cortex and that of anterior prefrontal cortex, independent from individual differences in overall brain volume. Notably, this negative correlation formed along anatomically separate pathways, as the dorsal and ventral parts of primary visual cortex showed focal anticorrelation with the dorsolateral and ventromedial parts of anterior prefrontal cortex, respectively. Moreover, a similar inverse correlation was found between primary auditory cortex and anterior prefrontal cortex, but no anatomical relationship was observed between other visual cortices and anterior prefrontal cortex. Together, these findings indicate that an anatomical trade-off exists between primary sensory cortices and anterior prefrontal cortex as a possible general principle of human cortical organization. This new discovery challenges the traditional view that the sizes of different brain areas simply scale with overall brain size and suggests the existence of shared genetic or developmental factors that contributes to the formation of anatomically and functionally distant cortical regions
    corecore