30 research outputs found
SMRT Genome Assembly Corrects Reference Errors, Resolving the Genetic Basis of Virulence in <i>Mycobacterium tuberculosis</i>
AbstractThe genetic basis of virulence in Mycobacterium tuberculosis has been investigated through genome comparisons of its virulent (H37Rv) and attenuated (H37Ra) sister strains. Such analysis, however, relies heavily on the accuracy of the sequences. While the H37Rv reference genome has had several corrections to date, that of H37Ra is unmodified since its original publication. Here, we report the assembly and finishing of the H37Ra genome from single-molecule, real-time (SMRT) sequencing. Our assembly reveals that the number of H37Ra-specific variants is less than half of what the Sanger-based H37Ra reference sequence indicates, undermining and, in some cases, invalidating the conclusions of several studies. PE_PPE family genes, which are intractable to commonly-used sequencing platforms because of their repetitive and GC-rich nature, are overrepresented in the set of genes in which all reported H37Ra-specific variants are contradicted. We discuss how our results change the picture of virulence attenuation and the power of SMRT sequencing for producing high-quality reference genomes.</jats:p
Interred mechanisms of resistance and host immune evasion revealed through network-connectivity analysis of M. tuberculosis complex graph pangenome
ABSTRACT Mycobacterium tuberculosis complex successfully adapts to environmental pressures through mechanisms of rapid adaptation which remain poorly understood despite knowledge gained through decades of research. In this study, we used 110 reference-quality, complete de novo assembled, long-read sequenced clinical genomes to study patterns of structural adaptation through a graph-based pangenome analysis, elucidating rarely studied mechanisms that enable enhanced clinical phenotypes offering a novel perspective to the species' adaptation. Across isolates, we identified a pangenome of 4,325 genes (3,767 core and 558 accessory), revealing 290 novel genes, and a substantially more complete account of difficult-to-sequence esx/pe/pgrs/ppe genes. Seventy-four percent of core genes were deemed non-essential in vitro, 38% of which support the pathogen’s survival in vivo, suggesting a need to broaden current perspectives on essentiality. Through information-theoretic analysis, we reveal the ppe genes that contribute most to the species’ diversity—several with known consequences for antigenic variation and immune evasion. Construction of a graph pangenome revealed topological variations that implicate genes known to modulate host immunity (Rv0071-73, Rv2817c, cas2), defense against phages/viruses (cas2, csm6, and Rv2817c-2821c), and others associated with host tissue colonization. Here, the prominent trehalose transport pathway stands out for its involvement in caseous granuloma catabolism and the development of post-primary disease. We show paralogous duplications of genes implicated in bedaquiline (mmpL5 in all L1 isolates) and ethambutol (embC-A) resistance, with a paralogous duplication of its regulator (embR) in 96 isolates. We provide hypotheses for novel mechanisms of immune evasion and antibiotic resistance through gene dosing that can escape detection by molecular diagnostics.IMPORTANCEM. tuberculosis complex (MTBC) has killed over a billion people in the past 200 years alone and continues to kill nearly 1.5 million annually. The pathogen has a versatile ability to diversify under immune and drug pressure and survive, even becoming antibiotic persistent or resistant in the face of harsh chemotherapy. For proper diagnosis and design of an appropriate treatment regimen, a full understanding of this diversification and its clinical consequences is desperately needed. A mechanism of diversification that is rarely studied systematically is MTBC’s ability to structurally change its genome. In this article, we have de novo assembled 110 clinical genomes (the largest de novo assembled set to date) and performed a pangenomic analysis. Our pangenome provides structural variation-based hypotheses for novel mechanisms of immune evasion and antibiotic resistance through gene dosing that can compromise molecular diagnostics and lead to further emergence of antibiotic resistance
Atypical Genetic Basis of Pyrazinamide Resistance in Monoresistant Mycobacterium tuberculosis
Pyrazinamide (PZA) is a widely used antitubercular chemotherapeutic. Typically, PZA resistance (PZA-R) emerges in
Mycobacterium tuberculosis
strains with existing resistance to isoniazid and rifampin (i.e., multidrug resistance [MDR]) and is conferred by loss-of-function
pncA
mutations that inhibit conversion to its active form, pyrazinoic acid (POA).
</jats:p
Exact mapping of Illumina blind spots in the <i>Mycobacterium tuberculosis</i> genome reveals platform-wide and workflow-specific biases
ABSTRACTWhole genome sequencing (WGS) is fundamental to M. tuberculosis basic research and many clinical applications. Coverage across Illumina-sequenced M. tuberculosis genomes is known to vary with sequence context, but this bias is poorly characterized. Here, through a novel application of phylogenomics that distinguishes genuine coverage bias from deletions, we discern Illumina “blind spots” in the M. tuberculosis reference genome for seven sequencing workflows. We find blind spots to be widespread, affecting 529 genes, and provide their exact coordinates, enabling salvage of unaffected regions. Fifty-seven PE/PPE genes (the primary families assumed to exhibit Illumina bias) lack blind spots entirely, while remaining PE/PPE genes account for 55.1% of blind spots. Surprisingly, we find coverage bias persists in homopolymers as short as 6 bp, shorter tracts than previously reported. While GC-rich regions challenge all Illumina sequencing workflows, a modified Nextera library preparation that amplifies DNA with a high-fidelity polymerase markedly attenuates coverage bias in GC-rich and homopolymeric sequences, expanding the “Illumina-sequencable” genome. Through these findings, and by defining workflow-specific exclusion criteria, we spotlight effective strategies for handling bias in M. tuberculosis Illumina WGS. This empirical analysis framework may be used to systematically evaluate coverage bias in other species using existing sequencing data.</jats:p
Exact mapping of Illumina blind spots in the Mycobacterium tuberculosis genome reveals platform-wide and workflow-specific biases
Whole-genome sequencing (WGS) is fundamental to
Mycobacterium tuberculosis
basic research and many clinical applications. Coverage across Illumina-sequenced
M. tuberculosis
genomes is known to vary with sequence context, but this bias is poorly characterized. Here, through a novel application of phylogenomics that distinguishes genuine coverage bias from deletions, we discern Illumina ‘blind spots’ in the
M. tuberculosis
reference genome for seven sequencing workflows. We find blind spots to be widespread, affecting 529 genes, and provide their exact coordinates, enabling salvage of unaffected regions. Fifty-seven pe/ppe genes (the primary families assumed to exhibit Illumina bias) lack blind spots entirely, while the remaining pe/ppe genes account for 55.1 % of blind spots. Surprisingly, we find coverage bias persists in homopolymers as short as 6 bp, shorter tracts than previously reported. While G+C-rich regions challenge all Illumina sequencing workflows, a modified Nextera library preparation that amplifies DNA with a high-fidelity polymerase markedly attenuates coverage bias in G+C-rich and homopolymeric sequences, expanding the ‘Illumina-sequenceable’ genome. Through these findings, and by defining workflow-specific exclusion criteria, we spotlight effective strategies for handling bias in
M. tuberculosis
Illumina WGS. This empirical analysis framework may be used to systematically evaluate coverage bias in other species using existing sequencing data.</jats:p
Rare alternative second line injectable drug resistance markers identified by gene-wise genome wide association in <i>M. tuberculosis</i> with unexplained resistance
AbstractPoint mutations in the rrs gene and eis promoter are known to confer resistance to second-line injectable drugs (SLIDs) amikacin (AMK), capreomycin (CAP), and kanamycin (KAN). While mutations in these canonical genes confer a majority of SLID-resistance, alternative mechanisms of resistance are not uncommon and threaten effective treatment decisions when using conventional molecular diagnostics. In total, 1184 clinical M. tuberculosis isolates from 7 countries were studied for genomic markers associated with phenotypic resistance. The markers rrs:A1401G and rrs:G1484T were associated with resistance to all three SLIDs, and three known markers in the eis promoter (eis:G-10A, eis:C-12T, and eis:C-14T) were similarly associated with kanamycin resistance (KAN-R). Among 325, 324, 270 AMK-R, CAP-R, and KAN-R isolates, 264 (81.2%), 250 (77.2%), and 249 (92.3%) harbored canonical mutations, respectively. Thirteen isolates harbored more than one canonical mutation. Canonical mutations did not account for 111 of the phenotypically resistant isolates. A gene-wise method identified three genes and promoters with mutations that, on aggregate, associated with unexplained resistance to at least one SLID. Our analysis associated whiB7 promoter mutations with KAN resistance, supporting clinical relevance for the previously demonstrated role of whiB7 overexpression in KAN resistance. We also provide evidence for the novel association of ppe51 (a gene previously associated with various antimicrobial compounds) with AMK resistance, and for the novel association of thrB with AMK and CAP resistance. The use of gene-wise association can provide additional insight, and therefore is recommended for identification of rare mechanisms of resistance when individual mutations carry insufficient statistical power.</jats:p
Distribution of Common and Rare Genetic Markers of Second-Line-Injectable-Drug Resistance in Mycobacterium tuberculosis Revealed by a Genome-Wide Association Study
Point mutations in the
rrs
gene and the
eis
promoter are known to confer resistance to the second-line injectable drugs (SLIDs) amikacin (AMK), capreomycin (CAP), and kanamycin (KAN). While mutations in these canonical genes confer the majority of SLID resistance, alternative mechanisms of resistance are not uncommon and threaten effective treatment decisions when using conventional molecular diagnostics.
</jats:p
Pyrazinamide Susceptibility Is Driven by Activation of the SigE-Dependent Cell Envelope Stress Response in Mycobacterium tuberculosis
For decades, pyrazinamide has served as a cornerstone of tuberculosis therapy. Unlike any other antitubercular drug, pyrazinamide requires an acidic environment to exert its action.</jats:p
Distribution of common and rare genetic markers of second-line-injectable-drug resistance in Mycobacterium tuberculosis revealed by a genome-wide association study
Point mutations in the rrs gene and the eis promoter are known to confer resistance to the second-line injectable drugs (SLIDs) amikacin (AMK), capreomycin (CAP), and kanamycin (KAN). While mutations in these canonical genes confer the majority of SLID resistance, alternative mechanisms of resistance are not uncommon and threaten effective treatment decisions when using conventional molecular diagnostics. In total, 1,184 clinical Mycobacterium tuberculosis isolates from 7 countries were studied for genomic markers associated with phenotypic resistance. The markers rrs:A1401G and rrs:G1484T were associated with resistance to all three SLIDs, and three known markers in the eis promoter (eis:G-10A, eis:C-12T, and eis:C-14T) were similarly associated with kanamycin resistance (KAN-R). Among 325, 324, and 270 AMK-R, CAP-R, and KAN-R isolates, 274 (84.3%), 250 (77.2%), and 249 (92.3%) harbored canonical mutations, respectively. Thirteen isolates harbored more than one canonical mutation. Canonical mutations did not account for 103 of the phenotypically resistant isolates. A genome-wide association study identified three genes and promoters with mutations that, on aggregate, were associated with unexplained resistance to at least one SLID. Our analysis associated whiB7 5′-untranslated-region mutations with KAN resistance, supporting clinical relevance for this previously demonstrated mechanism of KAN resistance. We also provide evidence for the novel association of CAP resistance with the promoter of the Rv2680-Rv2681 operon, which encodes an exoribonuclease that may influence the binding of CAP to the ribosome. Aggregating mutations by gene can provide additional insight and therefore is recommended for identifying rare mechanisms of resistance when individual mutations carry insufficient statistical power
Pyrazinamide action is driven by the cell envelope stress response in <i>Mycobacterium tuberculosis</i>
ABSTRACTPyrazinamide (PZA) plays a crucial role in first-line tuberculosis drug therapy. Unlike other antimicrobial agents, PZA is only active against Mycobacterium tuberculosis at low pH. The basis for this conditional drug susceptibility remains undefined. In this study, we utilized a genome-wide approach to interrogate potentiation of PZA action. We find that mutations in numerous genes involved in central metabolism as well as cell envelope maintenance and stress response are associated with PZA resistance. Further, we demonstrate that constitutive activation of the cell envelope stress response can drive PZA susceptibility independent of environmental pH. Consequently, treatment with peptidoglycan synthesis inhibitors, such as beta-lactams and D-cycloserine, potentiate PZA action through triggering this response. These findings illuminate a regulatory mechanism for conditional PZA susceptibility and reveals new avenues for enhancing potency of this important drug through targeting activation of the cell envelope stress response.</jats:p
