47 research outputs found
Is acetylation a metabolic rheostat that regulates skeletal muscle insulin action?
Skeletal muscle insulin resistance, which increases the risk for developing various metabolic diseases, including type 2 diabetes, is a common metabolic disorder in obesity and aging. If potential treatments are to be developed to treat insulin resistance, then it is important to fully understand insulin signaling and glucose metabolism. While recent large-scale "omics" studies have revealed the acetylome to be comparable in size to the phosphorylome, the acetylation of insulin signaling proteins and its functional relevance to insulin-stimulated glucose transport and glucose metabolism is not fully understood. In this Mini Review we discuss the acetylation status of proteins involved in the insulin signaling pathway and review their potential effect on, and relevance to, insulin action in skeletal muscle
Determining the Step Count Accuracy of Four Commercially Available Smart Watches
The purpose of this study was to determine the step counting accuracy of four commercial smart watches. Methods: Twelve adults (mean ± SD, 24.8 ± 8.4 years) completed this two-trial study. Trial 1(T1) occurred indoors and Trial 2 (T2) took place outdoors. During T1 participants were outfitted with four smart watches, two on each arm (Apple Watch Ultra, Coros Vertix 2, Garmin Fenix 6, Polar Grit X) and completed both a treadmill and activities of daily living (ADL) protocol. During T2 they completed a 3.2 kilometer trail run. During TW participants wore a chest harness outfitted with a GoPro camera pointed down at their feet. The GoPro continuously recorded video of all steps taken throughout the run. Steps during both study trials were counted by investigators using a hand tally device, which served as the criterion measure. Both trials were repeated to assess device reliability. We used a Repeated Measures ANOVA and Paired T-Tests for between device comparisons with a post hoc Bonferroni correction. Results: There was an overall statically significant difference in total steps between devices and the criterion measure (p\u3c0.01). There were statistical differences between devices across all trials. Conclusion: Our findings suggest these devices are most accurate during trail running but struggle to capture non-running activities
Muscle-specific knockout of general control of amino acid synthesis 5 (GCN5) does not enhance basal or endurance exercise-induced mitochondrial adaptation
Objective: Lysine acetylation is an important post-translational modification that regulates metabolic function in skeletal muscle. The acetyltransferase, general control of amino acid synthesis 5 (GCN5), has been proposed as a regulator of mitochondrial biogenesis via its inhibitory action on peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). However, the specific contribution of GCN5 to skeletal muscle metabolism and mitochondrial adaptations to endurance exercise in vivo remain to be defined. We aimed to determine whether loss of GCN5 in skeletal muscle enhances mitochondrial density and function, and the adaptive response to endurance exercise training.Methods: We used Cre-LoxP methodology to generate mice with muscle-specific knockout of GCN5 (mKO) and floxed, wildtype (WT) littermates. We measured whole-body energy expenditure, as well as markers of mitochondrial density, biogenesis, and function in skeletal muscle from sedentary mice, and mice that performed 20 days of voluntary endurance exercise training.Results: Despite successful knockdown of GCN5 activity in skeletal muscle of mKO mice, whole-body energy expenditure as well as skeletal muscle mitochondrial abundance and maximal respiratory capacity were comparable between mKO and WT mice. Further, there were no genotype differences in endurance exercise-mediated mitochondrial biogenesis or increases in PGC-1α protein content.Conclusion: These results demonstrate that loss of GCN5 in vivo does not promote metabolic remodeling in mouse skeletal muscle
Identification of Anti-Malarial Compounds as Novel Antagonists to Chemokine Receptor CXCR4 in Pancreatic Cancer Cells
Despite recent advances in targeted therapies, patients with pancreatic adenocarcinoma continue to have poor survival highlighting the urgency to identify novel therapeutic targets. Our previous investigations have implicated chemokine receptor CXCR4 and its selective ligand CXCL12 in the pathogenesis and progression of pancreatic intraepithelial neoplasia and invasive pancreatic cancer; hence, CXCR4 is a promising target for suppression of pancreatic cancer growth. Here, we combined in silico structural modeling of CXCR4 to screen for candidate anti-CXCR4 compounds with in vitro cell line assays and identified NSC56612 from the National Cancer Institute's (NCI) Open Chemical Repository Collection as an inhibitor of activated CXCR4. Next, we identified that NSC56612 is structurally similar to the established anti-malarial drugs chloroquine and hydroxychloroquine. We evaluated these compounds in pancreatic cancer cells in vitro and observed specific antagonism of CXCR4-mediated signaling and cell proliferation. Recent in vivo therapeutic applications of chloroquine in pancreatic cancer mouse models have demonstrated decreased tumor growth and improved survival. Our results thus provide a molecular target and basis for further evaluation of chloroquine and hydroxychloroquine in pancreatic cancer. Historically safe in humans, chloroquine and hydroxychloroquine appear to be promising agents to safely and effectively target CXCR4 in patients with pancreatic cancer
Recommended from our members
Is acetylation a metabolic rheostat that regulates skeletal muscle insulin action?
Skeletal muscle insulin resistance, which increases the risk for developing various metabolic diseases, including type 2 diabetes, is a common metabolic disorder in obesity and aging. If potential treatments are to be developed to treat insulin resistance, then it is important to fully understand insulin signaling and glucose metabolism. While recent large-scale "omics" studies have revealed the acetylome to be comparable in size to the phosphorylome, the acetylation of insulin signaling proteins and its functional relevance to insulin-stimulated glucose transport and glucose metabolism is not fully understood. In this Mini Review we discuss the acetylation status of proteins involved in the insulin signaling pathway and review their potential effect on, and relevance to, insulin action in skeletal muscle
The nuclear receptor ERRα is essential for skeletal muscle metabolic adaptations to endurance training (1164.2)
Knockout of STAT3 in skeletal muscle does not prevent high-fat diet-induced insulin resistance.
ObjectiveIncreased signal transducer and activator of transcription 3 (STAT3) signaling has been implicated in the development of skeletal muscle insulin resistance, though its contribution, in vivo, remains to be fully defined. Therefore, the aim of this study was to determine whether knockout of skeletal muscle STAT3 would prevent high-fat diet (HFD)-induced insulin resistance.MethodsWe used Cre-LoxP methodology to generate mice with muscle-specific knockout (KO) of STAT3 (mKO). Beginning at 10 weeks of age, mKO mice and their wildtype/floxed (WT) littermates either continued consuming a low fat, control diet (CON; 10% of calories from fat) or were switched to a HFD (60% of calories from fat) for 20 days. We measured body composition, energy expenditure, oral glucose tolerance and in vivo insulin action using hyperinsulinemic-euglycemic clamps. We also measured insulin sensitivity in isolated soleus and extensor digitorum longus muscles using the 2-deoxy-glucose (2DOG) uptake technique.ResultsSTAT3 protein expression was reduced ∼75-100% in muscle from mKO vs. WT mice. Fat mass and body fat percentage did not differ between WT and mKO mice on CON and were increased equally by HFD. There were also no genotype differences in energy expenditure or whole-body fat oxidation. As determined, in vivo (hyperinsulinemic-euglycemic clamps) and ex vivo (2DOG uptake), skeletal muscle insulin sensitivity did not differ between CON-fed mice, and was impaired similarly by HFD.ConclusionsThese results demonstrate that STAT3 activation does not underlie the development of HFD-induced skeletal muscle insulin resistance
Knockout of STAT3 in skeletal muscle does not prevent high-fat diet-induced insulin resistance
ObjectiveIncreased signal transducer and activator of transcription 3 (STAT3) signaling has been implicated in the development of skeletal muscle insulin resistance, though its contribution, in vivo, remains to be fully defined. Therefore, the aim of this study was to determine whether knockout of skeletal muscle STAT3 would prevent high-fat diet (HFD)-induced insulin resistance.MethodsWe used Cre-LoxP methodology to generate mice with muscle-specific knockout (KO) of STAT3 (mKO). Beginning at 10 weeks of age, mKO mice and their wildtype/floxed (WT) littermates either continued consuming a low fat, control diet (CON; 10% of calories from fat) or were switched to a HFD (60% of calories from fat) for 20 days. We measured body composition, energy expenditure, oral glucose tolerance and in vivo insulin action using hyperinsulinemic-euglycemic clamps. We also measured insulin sensitivity in isolated soleus and extensor digitorum longus muscles using the 2-deoxy-glucose (2DOG) uptake technique.ResultsSTAT3 protein expression was reduced ∼75-100% in muscle from mKO vs. WT mice. Fat mass and body fat percentage did not differ between WT and mKO mice on CON and were increased equally by HFD. There were also no genotype differences in energy expenditure or whole-body fat oxidation. As determined, in vivo (hyperinsulinemic-euglycemic clamps) and ex vivo (2DOG uptake), skeletal muscle insulin sensitivity did not differ between CON-fed mice, and was impaired similarly by HFD.ConclusionsThese results demonstrate that STAT3 activation does not underlie the development of HFD-induced skeletal muscle insulin resistance
