10 research outputs found

    Room temperature multiferroicity in orthorhombic LuFeO3_3

    Full text link
    From the measurement of dielectric, ferroelectric, and magnetic properties we observe simultaneous ferroelectric and magnetic transitions around \sim600 K in orthorhombic LuFeO3_3. We also observe suppression of the remanent polarization by \sim95\% under a magnetic field of \sim15 kOe at room temperature. The extent of suppression of the polarization under magnetic field increases monotonically with the field. These results show that even the orthorhombic LuFeO3_3 is a room temperature multiferroic of type-II variety exhibiting quite a strong coupling between magnetization and polarization.Comment: 5 pages with 5 figures; published in Appl. Phys. Let

    Effect of mechanical milling on the structural and dielectric properties of BaTiO3 powders

    No full text
    Barium titanate (BaTiO3) is a well-known ferroelectric material and widely used in electronic industries for the multi-layer ceramic capacitor. In this reported work, commercially available tetragonal BaTiO3 (BT) powders were taken to study the size effect on the structural and dielectric properties of the BT ceramics during high-energy ball milling (0-110 h). The same perovskite when kept under a normal atmospheric condition after milling shows gradual increase of additional crystalline phase that occurred because of the absorption of atmospheric CO2 gas, which is characterised as orthorhombic BaCO3. The milled BT samples were characterised by X-ray diffraction and small-angle X-ray scattering and a dielectric analyser. The purpose of this work was to study how the dielectric property of nanoBT ceramics varies with reduction of particle size, structural changes and the absorption of carbon by these nanopowders. It was observed that the dielectric constant of the BT powders increases with particle size reduction during milling. The dielectric behaviour of the BT ceramics significantly changes with polymorphic phase transformation in nanocrystalline BT at different stages of milling. The capacitance of nanoBT powders is significantly changed with the absorption of carbon by the nanoBT powders in a humid atmosphere

    Ultrafast, Highly Sensitive, and Selective Detection of p-Xylene at Room Temperature by Peptide-Hydrogel-Based Composite Material

    No full text
    A peptide/carbon dot (CD) composite xerogel is used as a selective p-xylene VOC (volatile organic compound) sensor. The fiber formation by the peptide allows us to attain a semiconducting property, whereas the presence of the CD amplifies the sensitivity. The selective detection of p-xylene is achieved at a very low concentration (response ≈ 96% for 50 ppm) with an ultrafast response (630 ms) and recovery (540 ms). The sensor is also able to detect p-xylene within crude oil, proving its industrial application. In comparison with the available VOC sensors, this work stands out as a low-cost, sensitive, and selective room-temperature p-xylene sensor with ultrafast sensing ability

    Ultrafast, Highly Sensitive, and Selective Detection of pXylene at Room Temperature by Peptide-Hydrogel-Based Composite Material

    No full text
    A peptide/carbon dot (CD) composite xerogel is used as a selective p-xylene VOC (volatile organic compound) sensor. The fiber formation by the peptide allows us to attain a semiconducting property, whereas the presence of the CD amplifies the sensitivity. The selective detection of p-xylene is achieved at a very low concentration (response ≈ 96% for 50 ppm) with an ultrafast response (630 ms) and recovery (540 ms). The sensor is also able to detect p-xylene within crude oil, proving its industrial application. In comparison with the available VOC sensors, this work stands out as a low-cost, sensitive, and selective room-temperature p-xylene sensor with ultrafast sensing ability
    corecore