166 research outputs found

    Promotion of access to essential medicines for Non-Communicable Diseases: Practical implications of the UN Political Declaration

    Get PDF
    Access to medicines and vaccines to prevent and treat non-communicable diseases (NCDs) is unacceptably low worldwide. In the 2011 UN political declaration on the prevention and control of NCDs, heads of government made several commitments related to access to essential medicines, technologies, and vaccines for such diseases. 30 years of experience with policies for essential medicines and 10 years of scaling up of HIV treatment have provided the knowledge needed to address barriers to long-term effective treatment and prevention of NCDs. More medicines can be acquired within existing budgets with efficient selection, procurement, and use of generic medicines. Furthermore, low-income and middle-income countries need to increase mobilisation of domestic resources to cater for the many patients with NCDs who do not have access to treatment. Existing initiatives for HIV treatment offer useful lessons that can enhance access to pharmaceutical management of NCDs and improve adherence to long-term treatment of chronic illness; policy makers should also address unacceptable inequities in access to controlled opioid analgesics. In addition to off-patent medicines, governments can promote access to new and future on-patent medicinal products through coherent and equitable health and trade policies, particularly those for intellectual property. Frequent conflicts of interest need to be identified and managed, and indicators and targets for access to NCD medicines should be used to monitor progress. Only with these approaches can a difference be made to the lives of hundreds of millions of current and future patients with NCDs

    Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    Get PDF
    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ

    Management of Psychosis in Parkinson’s Disease: Emphasizing Clinical Subtypes and Pathophysiological Mechanisms of the Condition

    Get PDF
    Investigation into neuropsychiatric symptoms in Parkinson’s disease (PD) is sparse and current drug development is mainly focused on the motor aspect of PD. The tight association of psychosis with an impaired quality of life in PD, together with an important underreporting of this comorbid condition, contributes to its actual insufficient assessment and management. Furthermore, the withdrawal from access to readily available treatment interventions is unacceptable and has an impact on PD prognosis. Despite its impact, to date no standardized guidelines to the adequate management of PD psychosis are available and they are therefore highly needed. Readily available knowledge on distinct clinical features as well as early biomarkers of psychosis in PD justifies the potential for its timely diagnosis and for early intervention strategies. Also, its specific characterisation opens up the possibility of further understanding the underlying pathophysiological mechanisms giving rise to more targeted therapeutic developments in the nearer future. A literature review on the most recent knowledge with special focus on specific clinical subtypes and pathophysiological mechanisms will not only contribute to an up to date practical approach of this condition for the health care providers, but furthermore open up new ideas for research in the near future

    Insulin Suppresses Endotoxin-Induced Oxidative, Nitrosative, and Inflammatory Stress in Humans

    Get PDF
    OBJECTIVE To investigate whether insulin reduces the magnitude of oxidative, nitrosative, and inflammatory stress and tissue damage responses induced by endotoxin (lipopolysaccharide [LPS]). RESEARCH DESIGN AND METHODS Nine normal subjects were injected intravenously with 2 ng/kg LPS prepared from Escherichia coli. Ten others were infused with insulin (2 units/h) for 6 h in addition to the LPS injection along with 100 ml/h of 5% dextrose to maintain normoglycemia. RESULTS LPS injection induced a rapid increase in plasma concentrations of nitric oxide metabolites, nitrite and nitrate (NOM), and thiobarbituric acid–reacting substances (TBARS), an increase in reactive oxygen species (ROS) generation by polymorphonuclear leukocytes (PMNLs), and marked increases in plasma free fatty acids, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), macrophage migration inhibition factor (MIF), C-reactive protein, resistin, visfatin, lipopolysaccharide binding protein (LBP), high mobility group-B1 (HMG-B1), and myoglobin concentrations. The coinfusion of insulin led to a total elimination of the increase in NOM, free fatty acids, and TBARS and a significant reduction in ROS generation by PMNLs and plasma MIF, visfatin, and myoglobin concentrations. Insulin did not affect TNF-α, MCP-1, IL-6, LBP, resistin, and HMG-B1 increases induced by the LPS. CONCLUSIONS Insulin reduces significantly several key mediators of oxidative, nitrosative, and inflammatory stress and tissue damage induced by LPS. These effects of insulin require further investigation for its potential use as anti-inflammatory therapy for endotoxemia. </jats:sec

    Advances in High-Resolution Radiation Detection Using 4H-SiC Epitaxial Layer Devices

    Get PDF
    Advances towards achieving the goal of miniature 4H-SiC based radiation detectors for harsh environment application have been studied extensively and reviewed in this article. The miniaturized devices were developed at the University of South Carolina (UofSC) on 8 × 8 mm 4H-SiC epitaxial layer wafers with an active area of ≈11 mm2. The thicknesses of the actual epitaxial layers were either 20 or 50 µm. The article reviews the investigation of defect levels in 4H-SiC epilayers and radiation detection properties of Schottky barrier devices (SBDs) fabricated in our laboratories at UofSC. Our studies led to the development of miniature SBDs with superior quality radiation detectors with highest reported energy resolution for alpha particles. The primary findings of this article shed light on defect identification in 4H-SiC epilayers and their correlation with the radiation detection properties

    A CdZnTeSe Gamma Spectrometer Trained by Deep Convolutional Neural Network for Radioisotope Identification

    Get PDF
    We report the implementation of a deep convolutional neural network to train a high-resolution room-temperature CdZnTeSe based gamma ray spectrometer for accurate and precise determination of gamma ray energies for radioisotope identification. The prototype learned spectrometer consists of a NI PCI 5122 fast digitizer connected to a pre-amplifier to recognize spectral features in a sequence of data. We used simulated preamplifier pulses that resemble actual data for various gamma photon energies to train a CNN on the equivalent of 90 seconds worth of data and validated it on 10 seconds worth of simulated data

    Suppressive Effect of Insulin on the Gene Expression and Plasma Concentrations of Mediators of Asthmatic Inflammation

    Get PDF
    Background and Hypothesis. Following our recent demonstration that the chronic inflammatory and insulin resistant state of obesity is associated with an increase in the expression of mediators known to contribute to the pathogenesis of asthma and that weight loss after gastric bypass surgery results in the reduction of these genes, we have now hypothesized that insulin suppresses the cellular expression and plasma concentrations of these mediators. Methods. The expression of IL-4, LIGHT, LTBR, ADAM-33, and TSLP in MNC and plasma concentrations of LIGHT, TGF-β1, MMP-9, MCP-1, TSLP, and NOM in obese patients with T2DM were measured before, during, and after the infusion of a low dose (2 U/h) infusion of insulin for 4 hours. The patients were also infused with dextrose or saline for 4 hours on two separate visits and served as controls. Results. Following insulin infusion, the mRNA expression of IL-4, ADAM-33, LIGHT, and LTBR mRNA expression fell significantly (P<0.05 for all). There was also a concomitant reduction in plasma NOM, LIGHT, TGF-β1, MCP-1, and MMP-9 concentrations. Conclusions. Insulin suppresses the expression of these genes and mediators related to asthma and may, therefore, have a potential role in the treatment of asthma

    Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    Get PDF
    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ
    corecore