68 research outputs found

    Implications of Cmip6 Models-Based Climate Biases and Runoff Sensitivity on Runoff Projection Uncertainties over Central India

    Get PDF
    Accurate runoff projections are vital for developing climate adaptation strategies, yet significant uncertainties persist. the commonly employed approaches to constrain these uncertainties rely on the stationarity of climate biases and runoff sensitivity, which may not hold for climate-sensitive regions (e.g., semi-arid regions). This study investigates the validity of the stationarity assumption across 29 CMIP6 models, encompassing diverse climate biases (Dry Warm, Wet Warm, Dry Cold, and Wet Cold), utilizing a semi-arid region in central India as a testbed. the implications of this assumption on runoff projection uncertainties were comprehensively assessed across the runoff modelling chain for three time periods (the 2030s, 2060s and 2090s) based on the Soil and Water Assessment Tool (SWAT) simulations. the results highlight the non-stationary nature of climate biases and runoff sensitivity under future scenarios, challenging the widespread applicability of common uncertainty-constraining approaches. Moreover, the impact of non-stationarity on runoff projection uncertainty was found to be strongly influenced by the choice of GCMs, preprocessing methods and climate change scenarios. in the 2030s, GCMs dominate runoff uncertainty, with dry models exhibiting ~10%–15% higher uncertainty compared to warm models, which is further amplified when interacting with warm biases. However, from the mid-century onwards, the bias-adjustment approaches, and climate change scenarios significantly shape runoff projection uncertainties under non-stationary conditions. These findings emphasize the potential of climate bias and runoff sensitivity-Based GCM selection for reducing runoff uncertainty in near-future assessment (2030s). for mid-term and long-term runoff projections, addressing diverse climate biases through bias-adjustment approaches is more viable. This study offers critical insights to prioritize the development of a non-stationarity-Based approach for reliable runoff projections in climate-sensitive regions

    Fine-Scale Structure Of Diurnal Variations Of Indian Monsoon Rainfall : Observational Analysis And Numerical Modeling

    No full text
    In the current study, we have presented a systematic analysis of the diurnal cycle of rainfall over the Indian region using satellite observations, and evaluated the ability of the Weather Research and Forecasting Model (WRF) to simulate some of the salient features of the observed diurnal characteristics of rainfall. Using high resolution simulations, we also investigate the underlying mechanisms of some of the observed diurnal signatures of rainfall. Using the Tropical Rain-fall Measuring Mission (TRMM) 3-hourly, 0.25 ×0.25 degree 3B42 rainfall product for nine years (1999-2007), we extract the finer spatial structure of the diurnal scale signature of Indian summer monsoon rainfall. Using harmonic analysis, we construct a signal corresponding to diurnal and sub-diurnal variability. Subsequently, the 3-hourly time-period or the octet of rain-fall peak for this filtered signal, referred to as the “peak octet,” is estimated with care taken to eliminate spurious peaks arising out of Gibbs oscillations. Our analysis suggests that over the Bay of Bengal, there are three distinct modes of the peak octet of diurnal rainfall corresponding to 1130, 1430 and 1730 IST, from north central to south Bay. This finding could be seen to be consistent with southward propagation of the diurnal rainfall pattern reported by earlier studies. Over the Arabian sea, there is a spatially coherent pattern in the mode of the peak octet (1430 IST), in a region where it rains for more than 30% of the time. In the equatorial Indian Ocean, while most of the western part shows a late night/early morning peak, the eastern part does not show a spatially coherent pattern in the mode of the peak octet, owing to the occurrence of a dual maxima (early morning and early/late afternoon). The Himalayan foothills were found to have a mode of peak octet corresponding to 0230 IST, whereas over the Burmese mountains and the Western Ghats (west coast of India) the rainfall peaks during late afternoon/early evening (1430-1730 IST). This implies that the phase of the diurnal cycle over inland orography (e.g., Himalayas) is significantly different from coastal orography (e.g., Western Ghats). We also find that over the Gangetic plains, the peak octet is around 1430 IST, a few hours earlier compared to the typical early evening maxima over land. The second part of our study involves evaluating the ability of the Weather Research and Fore-casting Model (WRF) to simulate the observed diurnal rainfall characteristics. It also includes conducting high resolution simulations to explore the underlying physical mechanisms of the observed diurnal signatures of rainfall. The model (at 54km resolution) is integrated for the month of July 2006 since this period was particularly favourable for the study of diurnal cycle. We first evaluate the sensitivity of the model to the prescribed sea surface temperature (SST) by using two different SST datasets, namely Final Analyses (FNL) and Real-time Global (RTG). The overall performance of RTG SST was found to be better than FNL, and hence it was used for further model simulations. Next, we investigated the impact of different parameterisations (convective, microphysical, boundary layer, radiation and land surface) on the simulation of diurnal cycle of rainfall. Following this sensitivity study, we identified the suite of physical parameterisations in the model that “best” reproduces the observed diurnal characteristics of Indian monsoon rainfall. The “best” model configuration was used to conduct two nested simulations with one-way, three-level nesting (54-18-6km) over central India and Bay of Bengal. While the 54km and 18km simulations were conducted for July 2006, the 6km simulation was carried out for the period 18-24 July 2006. This period was chosen for our study since it is composed of an active period (19-21 July 2006), followed by a break period (22-24 July 2006). At 6km grid-spacing the model is able to realistically simulate the active and break phases in rainfall. During the chosen active phase, we find that the observed rainfall over central India tends to reach a maximum in the late night/early morning hours. This is in contrast to the observed climatological diurnal maxima of late evening hours. Interestingly, the 6km simulation for the active phase is able to reproduce this late night/early morning maxima. Upon further analysis, we find that this is because of the strong moisture convergence at the mid-troposphere during 2030-2330 IST, leading to the rainfall peak seen during 2330-0230 IST. Based on our analysis, we conclude that during both active and break phases of summer monsoon, mid-level moisture convergence seems to be one of the primary factors governing the phase of the diurnal cycle of rainfall. Over the Bay of Bengal, the 6km model simulation is in very good agreement with observations, particularly during the active phase. The southward propagation observed during 19-20 July 2006, which was not captured by the coarse resolution simulation (54km), is exceedingly well captured by the 6km simulation. The positive anomalies in specific humidity attain a maxima during 2030-0230 IST in the north and during 0830-1430 IST in the south. This confirms the role of moisture convergence in the southward propagation of rainfall. Equally importantly we find that while low level moisture convergence is dominant in the north Bay, it is the mid-level moisture convergence that is predominant in the south Bay

    Understanding Atmospheric Convection Using Large Eddy Simulation

    No full text
    Cloud formation is based on the fundamental principle of atmospheric convection, which involves the vertical transport of heat and moisture into an unstable environment. Convective transfer of moisture and heat in the form of turbulent fluxes over the Bay of Bengal (BoB) has not been explored much and is not resolved in global and regional climate models (GCMs and RCMs) due to the coarser grid resolutions used. Therefore, the present study is an attempt to understand the convection phenomenon over the BoB using a high-resolution cloud-resolving large eddy simulation. Due to the lack of observational data over the BoB, initial and boundary conditions were generated using reanalysis data. We found that the LES successfully captured the cloud formation and convection phenomenon. The turbulence in the convection was analyzed by using Reynolds averaging to obtain variances and covariances. The presence of turbulence over the region was observed. The cloud characteristics were verified by conditionally averaging the output fields. The present study paves a pathway to perform various simulations at different atmospheric conditions over the region in order to create a library of high-resolution simulations

    Effects of convective scale downdrafts on the rainfall simulation in NCAR-CAM3

    Full text link
    corecore