4,075 research outputs found

    Evaluation of pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment with landsat thematic mapper

    Get PDF
    In this study several pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment are evaluated. GeoCBI (Geo Composite Burn Index) field data of burn severity were correlated with remotely sensed measures, based on the NBR (Normalized Burn Ratio), the NDMI (Normalized Difference Moisture Index) and the NDVI (Normalized Difference Vegetation Index). In addition, the strength of the correlation was evaluated for specific fuel types and the influence of the regression model type is pointed out. The NBR was the best remotely sensed index for assessing burn severity, followed by the NDMI and the NDVI. For this case study of the 2007 Peloponnese fires, results show that the GeoCBI-dNBR (differenced NBR) approach yields a moderate-high R(2) = 0.65. Absolute indices outperformed their relative equivalents, which accounted for pre-fire vegetation state. The GeoCBI-dNBR relationship was stronger for forested ecotypes than for shrub lands. The relationship between the field data and the dNBR and dNDMI (differenced NDMI) was nonlinear, while the GeoCBI-dNDVI (differenced NDVI) relationship appeared linear

    Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography

    Get PDF
    Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moons crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 209 kgm3. This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth

    Long-term variability of CO2 and O in the Mars upper atmosphere from MRO radio science data

    Get PDF
    We estimate the annual variability of CO2 and O partial density using approximately 6years of Mars Reconnaissance Orbiter (MRO) radio science data from August 2006 to January 2012, which cover three full Martian years (from the northern hemisphere summer of 28 to the northern hemisphere summer of 31). These two elements are the dominant species at the MRO periapsis altitude, constituting about 70-80% of the total density. We report the recovered annual cycle of CO2 and the annual and seasonal cycle of O in the upper atmosphere. Although no other observations are available at those altitudes, our results are in good agreement with the density measurements of the Mars Express Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars, which uses stellar occultations between 60 and 130km to determine the CO2 variability, and with the Mars Global Reference Atmospheric Model 2010 for the O annual and seasonal variabilities. Furthermore, the updated model provides more reasonable MRO drag coefficients (CD), which are estimated to absorb mismodeling in the atmospheric density prediction. The higher content of dust in the atmosphere due to dust storms increases the density, so the CDs should compensate for this effect. The correlation between the drag coefficient and the dust optical depth, measured by the Mars Odyssey Thermal Emission Imaging System (THEMIS) instrument, increases from 0.4 to 0.8 with the a priori and adjusted models, respectively. The trend of CDs not only confirms a substantial improvement in the prediction of the atmospheric density with the updated model but also provides useful information for local dust storms, near MRO periapsis, that cannot be measured by the opacity level since THEMIS does not always sample the southern hemisphere evenly
    corecore