709 research outputs found

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Communicating employability: the role of communicative competence for Zimbabwean highly skilled migrants in the UK

    Get PDF
    Skilled migration is an increasingly important topic for both policy and research internationally. OECD governments in particular are wrestling with tensions between their desire to use skilled migration to be on the winning side in the ‘global war for talent’ and their pandering to and/or attempts to outflank rising xenophobia. One aspect that has received relatively little attention is skilled migration from the African Commonwealth to the UK, a situation in which skilled migrants have relatively high levels of linguistic capital in the language of the host country. We focus here on the case of Zimbabwe. In spite of its popular image as a failed state, Zimbabwe has an exceptionally strong educational tradition and high levels of literacy and fluency in English. Drawing on 20 in-depth interviews of Zimbabwean highly skilled migrants, we explore the specific ways in which the communicative competences of these migrants with high formal levels of English operate in complex ways to shape their employability strategies and outcomes. We offer two main findings: first, that a dichotomy exists between their high level formal linguistic competence and their ability to communicate in less formal interactions, which challenges their employability, at least when they first move to the UK; and second, that they also lack, at least initially, the competence to narrativise their employability in ways that are culturally appropriate in England. Thus, to realise the full potential of their high levels of human capital, they need to learn how to communicate competently in a very different social and occupational milieu. Some have achieved this, but others continue to struggle

    Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis.

    Get PDF
    Arbuscular mycorrhizal (AM) fungi are symbionts of most plants, increasing plant growth and diversity. The model AM fungus Rhizophagus irregularis (isolate DAOM 197198) exhibits low within-fungus polymorphism. In contrast, another study reported high within-fungus variability. Experiments with other R. irregularis isolates suggest that within-fungus genetic variation can affect the fungal phenotype and plant growth, highlighting the biological importance of such variation. We investigated whether there is evidence of differing levels of within-fungus polymorphism in an R. irregularis population. We genotyped 20 isolates using restriction site-associated DNA sequencing and developed novel approaches for characterizing polymorphism among haploid nuclei. All isolates exhibited higher within-isolate poly-allelic single-nucleotide polymorphism (SNP) densities than DAOM 197198 in repeated and non-repeated sites mapped to the reference genome. Poly-allelic SNPs were independently confirmed. Allele frequencies within isolates deviated from diploids or tetraploids, or that expected for a strict dikaryote. Phylogeny based on poly-allelic sites was robust and mirrored the standard phylogeny. This indicates that within-fungus genetic variation is maintained in AM fungal populations. Our results predict a heterokaryotic state in the population, considerable differences in copy number variation among isolates and divergence among the copies, or aneuploidy in some isolates. The variation may be a combination of all of these hypotheses. Within-isolate genetic variation in R. irregularis leads to large differences in plant growth. Therefore, characterizing genomic variation within AM fungal populations is of major ecological importance

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Search for supersymmetry at √s = 13 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

    Get PDF
    A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons (e or μμ ) with the same electric charge or at least three isolated leptons. The search also utilises b-tagged jets, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample of proton–proton collisions at s√=13s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 corresponding to a total integrated luminosity of 3.2 fb −1−1. No significant excess over the Standard Model expectation is observed. The results are interpreted in several simplified supersymmetric models and extend the exclusion limits from previous searches. In the context of exclusive production and simplified decay modes, gluino masses are excluded at 95%95% confidence level up to 1.1–1.3 TeV for light neutralinos (depending on the decay channel), and bottom squark masses are also excluded up to 540 GeV. In the former scenarios, neutralino masses are also excluded up to 550–850 GeV for gluino masses around 1 TeV

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    Searches for Higgs boson pair production in the hh→bbττ, γγWW∗, γγbb, bbbb channels with the ATLAS detector

    Get PDF
    Searches for both resonant and nonresonant Higgs boson pair production are performed in the hh→bbττ, γγWW∗ final states using 20.3  fb−1 of pp collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. No evidence of their production is observed and 95% confidence-level upper limits on the production cross sections are set. These results are then combined with the published results of the hh→γγbb, bbbb analyses. An upper limit of 0.69 (0.47) pb on the nonresonant hh production is observed (expected), corresponding to 70 (48) times the SM gg→hh cross section. For production via narrow resonances, cross-section limits of hh production from a heavy Higgs boson decay are set as a function of the heavy Higgs boson mass. The observed (expected) limits range from 2.1 (1.1) pb at 260 GeV to 0.011 (0.018) pb at 1000 GeV. These results are interpreted in the context of two simplified scenarios of the Minimal Supersymmetric Standard Model

    Addendum to ‘measurement of the tt̄ production cross-section using eμ events with b-tagged jets in pp collisions at √s= 7 and 8 TeV with the ATLAS detector’

    Get PDF
    The ATLAS measurement of the inclusive top quark pair (tt̄) cross-section σtt̄ in proton–proton collisions at √s=8 TeV has been updated using the final 2012 luminosity calibration. The updated cross-section result is: σtt¯=242.9±1.7±5.5±5.1±4.2pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, knowledge of the integrated luminosity and of the LHC beam energy. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. The measurement of the ratio of tt̄ cross-sections at √s=8 TeV and √s=7 TeV, and the √s=8 TeV fiducial measurement corresponding to the experimental acceptance of the leptons, have also been updated. The most precise measurement of the tt̄ cross-section (σtt̄) in proton–proton collisions at √s=8 TeV from the ATLAS Collaboration was made using events with an opposite-charge electron–muon pair and one or two b-tagged jets [1], and used a preliminary calibration of the integrated luminosity. The luminosity calibration has been finalised since [2] with a total uncertainty of 1.9%, corresponding to a substantial improvement on the previous uncertainty of 2.8%. Since the uncertainty on the integrated luminosity contributed 3.1% of the total 4.3% uncertainty on the σtt¯ measurement reported in [1], a significant improvement in the measurement is possible by using the new luminosity calibration, as documented in this Addendum. The new calibration corresponds to an integrated luminosity of 20.2 fb−¹ for the √s=8 TeV sample, a decrease of 0.2%. The cross-section was recomputed taking into account the effects on both the conversion of the tt¯ event yield to a cross-section, and the background estimates, giving a result of: σtt¯=242.9±1.7±5.5±5.1±4.2pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, knowledge of the integrated luminosity, and of the LHC beam energy, giving a total uncertainty of 8.8 pb (3.6 %). The result is consistent with the theoretical prediction of 252.9−14.5+13.3 pb, calculated at next-to-next-to-leading-order with next-to-next-to-leading-logarithmic soft gluon terms with the top++ 2.0 program [3] as discussed in detail in Ref. [1]. The updated value of the ratio of cross-sections Rtt¯=σtt¯(8 TeV)/σtt¯(7 TeV) is: Rtt¯=1.328±0.024±0.015±0.038±0.001, with uncertainties defined as above, adding in quadrature to a total of 0.047. The largest uncertainty comes from the uncertainties on the integrated luminosities, considered to be uncorrelated between the √s=7 TeV and √s=8 TeV datasets. This result is 2.1σ below the expectation of 1.430±0.013 calculated from top++ 2.0 as discussed in Ref. [1]. The updated fiducial cross-sections, for a tt¯ decay producing an eμ pair within a given fiducial region, are shown in Table 1, updating Table 5 of Ref. [1]. The results are given both for the analysis requirements of pT>25GeV and |η|30GeV and |η|<2.4. They are given separately for the two cases where events with either one or both leptons coming from t→W→τ→ℓ rather than the direct decay t→W→ℓ(ℓ=e or μ) are included, or where the contributions involving τ decays are subtracted. The results shown for the √s=7 TeV data sample are unchanged with respect to those in Ref. [1]. The results for the top quark pole mass and limits on light supersymmetric top squarks presented in Ref. [1] are derived from √s=7 TeV and √s=8 TeV cross-section measurements taken together, and would be only slightly improved by the luminosity update described here
    corecore