258 research outputs found

    Combining in vitro protein detection and in vivo antibody detection identifies potential vaccine targets against Staphylococcus aureus during osteomyelitis

    Get PDF
    Currently, little is known about the in vivo human immune response against Staphylococcus aureus during a biofilm-associated infection, such as osteomyelitis, and how this relates to protein production in biofilms in vitro. Therefore, we characterized IgG responses in 10 patients with chronic osteomyelitis against 50 proteins of S. aureus, analyzed the presence of these proteins in biofilms of the infecting isolates on polystyrene (PS) and human bone in vitro, and explored the relation between in vivo and in vitro data. IgG levels against 15 different proteins were significantly increased in patients compared to healthy controls. Using a novel competitive Luminex-based assay, eight of these proteins [alpha toxin, Staphylococcus aureus formyl peptide receptor-like 1 inhibitor (FlipR), glucosaminidase, iron-responsive surface determinants A and H, the putative ABC transporter SACOL0688, staphylococcal complement inhibitor (SCIN), and serine–aspartate repeat-containing protein E (SdrE)] were also detected in a majority of the infecting isolates during biofilm formation in vitro. However, 4 other proteins were detected in only a minority of isolates in vitro while, vice versa, 7 proteins were detected in multiple isolates in vitro but not associated with significantly increased IgG levels in patients. Detection of proteins was largely confirmed using a transcriptomic approach. Our data provide further insights into potential therapeutic targets, such as for vaccination, to reduce S. aureus virulence and biofilm formation. At the same time, our data suggest that either in vitro or immunological in vivo data alone should be interpreted cautiously and that combined studies are necessary to identify potential targets

    Scenarios for conservation and development: participatory modelling to support decision making in tropical forest landscapes

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Ecología. Fecha de lectura: 08-10-201

    Carbon fluxes from land 2000-2020: bringing clarity to countries' reporting

    Get PDF
    Despite an increasing attention on the role of land in meeting countries' climate pledges under the Paris Agreement, the range of estimates of carbon fluxes from land use, land-use change, and forestry (LULUCF) in available databases is very large. A good understanding of the LULUCF data reported by countries under the United Nations Framework Convention on Climate Change (UNFCCC) - and of the differences with other datasets based on country-reported data - is crucial to increase confidence in land-based climate change mitigation efforts.Here we present a new data compilation of LULUCF fluxes of carbon dioxide (CO2) on managed land, aiming at providing a consolidated view on the subject. Our database builds on a detailed analysis of data from national greenhouse gas inventories (NGHGIs) communicated via a range of country reports to the UNFCCC, which report anthropogenic emissions and removals based on the IPCC (Intergovernmental Panel on Climate Change) methodology. Specifically, for Annex I countries, data are sourced from annual GHG inventories. For non-Annex I countries, we compiled the most recent and complete information from different sources, including national communications, biennial update reports, submissions to the REDD+ (reducing emissions from deforestation and forest degradation) framework, and nationally determined contributions. The data are disaggregated into fluxes from forest land, deforestation, organic soils, and other sources (including non-forest land uses). The CO2 flux database is complemented by information on managed and unmanaged forest area as available in NGHGIs. To ensure completeness of time series, we filled the gaps without altering the levels and trends of the country reported data. Expert judgement was applied in a few cases when data inconsistencies existed.Results indicate a mean net global sink of -1.6 GtCO(2) yr(-1) over the period 2000-2020, largely determined by a sink on forest land (-6.4 GtCO(2) yr(-1)), followed by source from deforestation (+4.4 GtCO(2) yr(-1)), with smaller fluxes from organic soils (+0.9 GtCO(2) yr(-1)) and other land uses (-0.6 GtCO(2) yr(-1)).Furthermore, we compare our NGHGI database with two other sets of country-based data: those included in the UNFCCC GHG data interface, and those based on forest resources data reported by countries to the Food and Agriculture Organization of the United Nations (FAO) and used as inputs into estimates of GHG emissions in FAOSTAT. The first dataset, once gap filled as in our study, results in a net global LULUCF sink of -5.4 GtCO(2) yr(-1). The difference with the NGHGI database is in this case mostly explained by more updated and comprehensive data in our compilation for non-Annex I countries. The FAOSTAT GHG dataset instead estimates a net global LULUCF source of +1.1 GtCO(2) yr(-1). In this case, most of the difference to our results is due to a much greater forest sink for non-Annex I countries in the NGHGI database than in FAOSTAT. The difference between these datasets can be mostly explained by a more complete coverage in the NGHGI database, including for non-biomass carbon pools and non-forest land uses, and by different underlying data on forest land. The latter reflects the different scopes of the country reporting to FAO, which focuses on area and biomass, and to UNFCCC, which explicitly focuses on carbon fluxes. Bearing in mind the respective strengths and weaknesses, both our NGHGI database and FAO offer a fundamental, yet incomplete, source of information on carbon-related variables for the scientific and policy communities, including under the Global stocktake.Overall, while the quality and quantity of the LULUCF data submitted by countries to the UNFCCC significantly improved in recent years, important gaps still remain. Most developing countries still do not explicitly separate managed vs. unmanaged forest land, a few report implausibly high forest sinks, and several report incomplete estimates. With these limits in mind, the NGHGI database presented here represents the most up-to-date and complete compilation of LULUCF data based on country submissions to UNFCCC.Data from this study are openly available via the Zenodo portal (Grassi et al., 2022), at https://doi.org/10.5281/zenodo.7190601

    Aortic valve visualization and pressurization device: a novel device for intraoperative evaluation of aortic valve repair procedures

    Get PDF
    OBJECTIVESAortic valve repair procedures are technically challenging, and current intraoperative evaluation methods often fail to predict the final echocardiographic result. We have developed a novel intraoperative aortic valve visualization and pressurization (AVP) device, enabling valve inspection under physiological conditions, and measuring aortic valve insufficiency (AI) during cardioplegic arrest.METHODSThe AVP device is attached to the (neo)aorta, after any type of aortic valve repair, while the heart is arrested. The root is pressurized (60–80 mmHg) using a saline solution and an endoscope is introduced. The valve is inspected, and the amount of valvular leakage is measured. Postoperative ‘gold standard’ transesophageal echocardiogram measurements of AI are performed and compared against regurgitation volume measured.RESULTSIn 24 patients undergoing valve-sparing root replacement, the AVP device was used. In 22 patients, postoperative echocardiographic AI was ≤ grade 1. The median leakage was 90 ml/min, IQR 60–120 ml/min. In 3 patients, additional adjustments after visual inspection was performed. In 2 patients, with complex anatomy, the valve was replaced. In one, after evaluation with the device, there was undesirable result visually and residual AI of 330 ml/min, and in another, 260 ml/min residual AI was measured and valve restriction on visual inspection.CONCLUSIONSThe novel AVP device enables intraoperative evaluation of the valve under physiological conditions, while still on arrested heart, and allows for targeted adjustments. The AVP device can be an important aid for intraoperative evaluation of the aortic valve, during valve repair and valve-sparing procedures, thereby making the operative result more predictable and the operation more efficient.Thoracic Surger

    Forestry for a low carbon future. Integrating forests and wood products in climate change strategies

    Get PDF
    Following the introduction, Chapter 2 provides an overview of mitigation in the forest sector, addressing the handling of forests under UNFCCC. Chapters 3 to 5 focus on forest-based mitigation options – afforestation, reforestation, REDD+ and forest management – and Chapters 6 and 7 focus on wood-product based options – wood energy and green building and furnishing. The publication describes these activities in the context of UNFCCC rules, assessing their mitigation potential and economic attrac tiveness as well as opportunities and challenges for implementation. Chapter 8 discusses the different considerations involved in choosing the right mix of options as well as some of the instruments and means for implementation. Chapter 8 also highlights the co-benefits generated by forest-based mitigation and emphasizes that economic assessment of mitigation options needs to take these benefits into account. The concluding chapter assesses national commitments under UNFCCC involving forest miti gation and summarizes the challenges and opportunities
    corecore