59 research outputs found
Validity of self-reported breast cancer characteristics in a nationwide cohort of women with a family history of breast cancer
Abstract Background Women may have incomplete understanding of a breast cancer diagnosis, leading to inaccurate reporting in epidemiological studies. However, it is not feasible to obtain consent for medical records from all women participating in a study. Therefore, it is important to determine how well self-reported breast cancer characteristics correspond with what is found in medical records, but few studies have evaluated agreement of self-reported breast cancer characteristics with abstracted medical records. Methods We calculated the positive predictive value (PPV) of self-reports compared to medical records and explored whether participant characteristics may have influenced reporting accuracy. We analyzed data from 2518 reported breast cancer cases from the Sister Study, a large nationwide cohort of women with a family history of breast cancer. Results Medical records or pathology reports were obtained for 2066 of 2518 (82%) women who reported incident breast cancer. Breast cancer was confirmed for over 99% (n = 2054) of women with medical records. Confirmation rates were high for invasive, ductal, hormone receptor positive, and HER2 negative breast cancers, with little variation by race/ethnicity or age. Self-reported in situ breast cancer had a lower PPV (64.2%), with medical records showing invasive breast cancer instead, especially for older and Hispanic women. Hormone receptor (ER and PR) negative and HER2 positive self-reports had lower PPVs (83.0%, 71.6%, and 66.1% respectively). Hispanic women and women ages 65 or older at diagnosis were less able to accurately report breast cancer stage, excluding stage I. Conclusions Accuracy of reporting overall breast cancer and common subtypes is high. Despite having a family history of breast cancer and voluntarily enrolling in a study evaluating breast cancer risk factors, participants may have greater difficulty distinguishing between in situ and invasive breast cancer and may less accurately report other less common subtypes. Discrepancies may reflect women’s poor understanding of information conveyed by health care providers or lack of consistent terminology used to describe subtypes
Cross-ancestry GWAS meta-analysis identifies six breast cancer loci in African and European ancestry women
Our study describes breast cancer risk loci using a cross-ancestry GWAS approach. We first identify variants that are associated with breast cancer at P \u3c 0.05 from African ancestry GWAS meta-analysis (9241 cases and 10193 controls), then meta-analyze with European ancestry GWAS data (122977 cases and 105974 controls) from the Breast Cancer Association Consortium. The approach identifies four loci for overall breast cancer risk [1p13.3, 5q31.1, 15q24 (two independent signals), and 15q26.3] and two loci for estrogen receptor-negative disease (1q41 and 7q11.23) at genome-wide significance. Four of the index single nucleotide polymorphisms (SNPs) lie within introns of genes (KCNK2, C5orf56, SCAMP2, and SIN3A) and the other index SNPs are located close to GSTM4, AMPD2, CASTOR2, and RP11-168G16.2. Here we present risk loci with consistent direction of associations in African and European descendants. The study suggests that replication across multiple ancestry populations can help improve the understanding of breast cancer genetics and identify causal variants
Cross-ancestry GWAS meta-analysis identifies six breast cancer loci in African and European ancestry women.
Our study describes breast cancer risk loci using a cross-ancestry GWAS approach. We first identify variants that are associated with breast cancer at P < 0.05 from African ancestry GWAS meta-analysis (9241 cases and 10193 controls), then meta-analyze with European ancestry GWAS data (122977 cases and 105974 controls) from the Breast Cancer Association Consortium. The approach identifies four loci for overall breast cancer risk [1p13.3, 5q31.1, 15q24 (two independent signals), and 15q26.3] and two loci for estrogen receptor-negative disease (1q41 and 7q11.23) at genome-wide significance. Four of the index single nucleotide polymorphisms (SNPs) lie within introns of genes (KCNK2, C5orf56, SCAMP2, and SIN3A) and the other index SNPs are located close to GSTM4, AMPD2, CASTOR2, and RP11-168G16.2. Here we present risk loci with consistent direction of associations in African and European descendants. The study suggests that replication across multiple ancestry populations can help improve the understanding of breast cancer genetics and identify causal variants
A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci
Genome-wide association studies (GWAS) in European populations have identified genetic risk variants associated with multiple myeloma (MM)
Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer
Triple-negative (TN) breast cancer is an aggressive subtype of breast cancer associated with a unique set of epidemiologic and genetic risk factors. We conducted a two-stage genome-wide association study of TN breast cancer (stage 1: 1529 TN cases, 3399 controls; stage 2: 2148 cases, 1309 controls) to identify loci that influence TN breast cancer risk. Variants in the 19p13.1 and PTHLH loci showed genome-wide significant associations (P < 5 × 10− 8) in stage 1 and 2 combined. Results also suggested a substantial enrichment of significantly associated variants among the single nucleotide polymorphisms (SNPs) analyzed in stage 2. Variants from 25 of 74 known breast cancer susceptibility loci were also associated with risk of TN breast cancer (P < 0.05). Associations with TN breast cancer were confirmed for 10 loci (LGR6, MDM4, CASP8, 2q35, 2p24.1, TERT-rs10069690, ESR1, TOX3, 19p13.1, RALY), and we identified associations with TN breast cancer for 15 additional breast cancer loci (P < 0.05: PEX14, 2q24.1, 2q31.1, ADAM29, EBF1, TCF7L2, 11q13.1, 11q24.3, 12p13.1, PTHLH, NTN4, 12q24, BRCA2, RAD51L1-rs2588809, MKL1). Further, two SNPs independent of previously reported signals in ESR1 [rs12525163 odds ratio (OR) = 1.15, P = 4.9 × 10− 4] and 19p13.1 (rs1864112 OR = 0.84, P = 1.8 × 10− 9) were associated with TN breast cancer. A polygenic risk score (PRS) for TN breast cancer based on known breast cancer risk variants showed a 4-fold difference in risk between the highest and lowest PRS quintiles (OR = 4.03, 95% confidence interval 3.46–4.70, P = 4.8 × 10− 69). This translates to an absolute risk for TN breast cancer ranging from 0.8% to 3.4%, suggesting that genetic variation may be used for TN breast cancer risk prediction
Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade
Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16–1.33, P = 4.2 × 10−10) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04–1.11, P = 8.7 × 10−6) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07–1.23, P = 7.9 × 10−5) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10−3). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer
Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium
Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04–1.10, P = 2.9 × 10−6], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03–1.07, P = 1.7 × 10−6) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07–1.12, P = 5.1 × 10−17). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05–1.10, P = 1.0 × 10−8); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04–1.07, P = 2.0 × 10−10). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act
Abstract 2298: Antibiotic use and breast cancer risk: results from the Sister Study
Abstract
Background: Regular antibiotic use is hypothesized to influence breast cancer risk by a number of mechanisms including disruption of intestinal microflora which plays a role in the conversion of food-based phytochemicals into bioactive substances suggested to be protective against cancer, and by influences on the immune system and inflammatory response. Previous results have been mixed, and given the sparse and conflicting data in epidemiologic literature, we analyzed the association between regular antibiotic use and breast cancer risk, overall and by different classes of antibiotics.
Methods: Regular antibiotic use, as characterized by class type and number, duration, and indication for use, was evaluated for its association with breast cancer risk among participants of the NIEHS Sister Study, a prospective cohort of 50,884 US women aged 35-74 without breast cancer who have had a sister diagnosed with breast cancer.
Results: 5,312 (10.4%) of women in the Sister Study reported ever having regular antibiotic use (at least 3 times per week for 3 months in a row or longer) with a median duration of 1.50 years (0.25 – 53.8). 34% of regular uses reported use greater than 2 years. Skin conditions including acne and rosacea were the most common indications for use (6.02%). The hazard ratio (HR) was 1.10 (0.99-1.27) for ever regular antibiotic use and 1.40 (1.16-1.69) for greater than 2 years of regular use. Results are suggestive of an increased risk among regular users who have only ever used one class rather than more than one class of antibiotics. Adjusted hazard ratios were 1.40 (0.99-1.99) for tetracyclines only, 1.45 (0.95-2.20) for penicillins only, 1.42 (0.94-2.15) for macrolides alone. However, there does not appear to be an association between ever regular use of more than one class of antibiotics and breast cancer. Furthermore, there was no association between indications for ever regular use and breast cancer risk, among all women reporting regular use of antibiotics, regardless of class.
Conclusion: Overall, there is a suggestion that ever regular use of a single class of antibiotics, but not use of more than one class, may be associated with increased breast cancer risk. However, given that most individuals reported only a single episode of regular antibiotic use for a duration of less than 2 years; further exploration is warranted to rule out effects of underlying indication for use or explore other possible class specific-confounders.
Citation Format: Sandra L. Deming-Halverson, M. Elizabeth Hodgson, Aimee D'Aloisio, David Shore, Dale Sandler. Antibiotic use and breast cancer risk: results from the Sister Study [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2298. doi:10.1158/1538-7445.AM2017-2298</jats:p
Validity of self-reported breast cancer characteristics in a nationwide cohort of women with a family history of breast cancer
Abstract Background Women may have incomplete understanding of a breast cancer diagnosis, leading to inaccurate reporting in epidemiological studies. However, it is not feasible to obtain consent for medical records from all women participating in a study. Therefore, it is important to determine how well self-reported breast cancer characteristics correspond with what is found in medical records, but few studies have evaluated agreement of self-reported breast cancer characteristics with abstracted medical records. Methods We calculated the positive predictive value (PPV) of self-reports compared to medical records and explored whether participant characteristics may have influenced reporting accuracy. We analyzed data from 2518 reported breast cancer cases from the Sister Study, a large nationwide cohort of women with a family history of breast cancer. Results Medical records or pathology reports were obtained for 2066 of 2518 (82%) women who reported incident breast cancer. Breast cancer was confirmed for over 99% (n = 2054) of women with medical records. Confirmation rates were high for invasive, ductal, hormone receptor positive, and HER2 negative breast cancers, with little variation by race/ethnicity or age. Self-reported in situ breast cancer had a lower PPV (64.2%), with medical records showing invasive breast cancer instead, especially for older and Hispanic women. Hormone receptor (ER and PR) negative and HER2 positive self-reports had lower PPVs (83.0%, 71.6%, and 66.1% respectively). Hispanic women and women ages 65 or older at diagnosis were less able to accurately report breast cancer stage, excluding stage I. Conclusions Accuracy of reporting overall breast cancer and common subtypes is high. Despite having a family history of breast cancer and voluntarily enrolling in a study evaluating breast cancer risk factors, participants may have greater difficulty distinguishing between in situ and invasive breast cancer and may less accurately report other less common subtypes. Discrepancies may reflect women’s poor understanding of information conveyed by health care providers or lack of consistent terminology used to describe subtypes
Local breast cancer spatial patterning: a tool for community health resource allocation to address local disparities in breast cancer mortality.
Despite available demographic data on the factors that contribute to breast cancer mortality in large population datasets, local patterns are often overlooked. Such local information could provide a valuable metric by which regional community health resources can be allocated to reduce breast cancer mortality. We used national and statewide datasets to assess geographical distribution of breast cancer mortality rates and known risk factors influencing breast cancer mortality in middle Tennessee. Each county in middle Tennessee, and each ZIP code within metropolitan Davidson County, was scored for risk factor prevalence and assigned quartile scores that were used as a metric to identify geographic areas of need. While breast cancer mortality often correlated with age and incidence, geographic areas were identified in which breast cancer mortality rates did not correlate with age and incidence, but correlated with additional risk factors, such as mammography screening and socioeconomic status. Geographical variability in specific risk factors was evident, demonstrating the utility of this approach to identify local areas of risk. This method revealed local patterns in breast cancer mortality that might otherwise be overlooked in a more broadly based analysis. Our data suggest that understanding the geographic distribution of breast cancer mortality, and the distribution of risk factors that contribute to breast cancer mortality, will not only identify communities with the greatest need of support, but will identify the types of resources that would provide the most benefit to reduce breast cancer mortality in the community
- …
