55 research outputs found
In vivo, in vitro and in silico investigations on disc nucleus replacements in the sheep model
Bandscheibenbedingte Rückenschmerzen stellen eine Gesundheitsstörung von
herausragender Bedeutung dar. Innovative Therapiekonzepte sind darauf
ausgerichtet, schmerzhaft degenerierte Bandscheiben in ihren natürlichen Strukturen
zu regenerieren. Allein durch den chirurgischen Eingriff zur Anwendung dieser
Therapiekonzepte wird jedoch die mechanische Kompetenz der Bandscheibe
empfindlich gestört. Derzeit ist nicht bekannt, ob neue Nukleusersatzmaterialien für
Tissue engineering Strategien an der Bandscheibe diesen Verlust kompensieren
können. Daher war es das Ziel der Dissertation in einem kombinierten
experimentellen Versuchsansatz aus In-vivo-, Ex-vivo-, In-vitro- und In-silico-
Untersuchungen, neu entwickelte Hydrogele als Nukleusersatz im Tiermodell Schaf
zu untersuchen und das Schaf als Tiermodell im Bereich der Bandscheibenforschung
näher zu charakterisieren.
Um ein physiologisches Lastprotokoll für die In-vitro-Untersuchungen zu etablieren,
wurde an drei Schafen der intradiskale Druck (IDP) über je 24 Stunden gemessen.
Der gesamte Datenpool des ersten Schafes wurde in eine Aktivitäts- und
Erholungsphase unterteilt und ex vivo aus den IDP-Durchschnittswerten beider
Phasen die entsprechenden axialen Kompressionskräfte abgeleitet. In vitro wurde
ein Kriech-Relaxations-Test an 36 ovinen lumbalen Bewegungssegmenten
durchgeführt. Die Segmente wurden drei Belastungszyklen ausgesetzt, die jeweils
aus einer 15-minütigen Belastungsphase (130 N) und einer 30-minütigen
Erholungsphase (58 N) bestanden. IDP-Verlauf und Höhenverlust der Segmente
wurden in sechs verschiedenen Versuchsgruppen untersucht: (i) INTAKT;
(ii) DEF-AN: Eine schräge Anulusinzision. Der Defekt wurde durch Naht und
Cyanoacrylatkleber verschlossen. (iii) DEF-NUKn+k: Nukleusgewebe wurde entfernt
und anschließend reimplantiert. Der Anulusverschluss erfolgte wie in DEF-AN.
(iv) DEF-NUKp: Entsprechend dem Vorgehen in Testgruppe DEF-NUKn+k wurde der
Nukleus entfernt und reimplantiert. Um eine Volumenverdrängung reimplantierten
Gewebes in den inneren Anulusdefekt zu vermeiden, erfolgte der Verschluss mittels
eines Plugs. Abschließend wurden zwei Hydrogele als Nukleusersatz untersucht:
(v) DDAHA und (vi) iGG-MA. Zur besseren Interpretation der In-vitro-Ergebnisse
wurden Finite-Elemente-Analysen an einem Bandscheibenmodell durchgeführt.
In vivo lag der Bandscheibendruck beim Schaf nahezu konstant höher als beim
Menschen. Niedrigste Druckwerte wurden intraoperativ mit ~0,5 MPa ermittelt.
Höchste Druckwerte wurden für Aufstehen oder Drehen mit 3,6 bzw. 2,6 MPa
gemessen und waren damit ungefähr zwei- bis viermal höher in der ovinen
Bandscheibe. Die IDP-Mittelwerte der Aktivitäts- und Erholungsphasen des ersten
Schafes lagen bei ~0,75 bzw. ~0,5 MPa, welche axialen Kompressionskräften von
130 bzw. 58 N entsprachen. Im Kriech-Relaxations-Test hatte ein isolierter
Anulusdefekt (DEF-AN) keinen Einfluss auf Höhenverlust und IDP der Segmente.
DEF-NUKn+k, DEF-NUKp, DDAHA und iGG-MA hingegen steigerten den
Höhenverlust und verringerten signifikant den IDP im Vergleich zu INTAKT. Die
Modellvorhersagen belegten erhebliche Auswirkungen eines reduzierten
Wassergehalts, Kompressionsmoduls und osmotischen Potentials des
reimplantierten Gewebes auf den Höhenverlust und IDP des Segmentes. Die
Lastübertragung innerhalb der Bandscheibe veränderte sich hierdurch deutlich und
ging mit einer erhöhten Belastung des Anulus einher.
Die vergleichsweise hohen Bandscheibendrücke des Schafes stehen der weit
verbreiteten Meinung gegenüber, dass aufgrund der horizontal ausgerichteten
Wirbelsäule des Vierbeiners, intradiskale Lasten geringer sein müssten als beim
Menschen. In Kenntnis der vorliegenden Untersuchungen sollte die Rechtfertigung
bzw. der Ausschluss des Schafes als Modell im Bereich der Wirbelsäule nicht auf
Unterschieden im Gang begründet werden, sondern auf mechanischen
Überlegungen bzgl. künftiger Einsatzgebiete. Die In-vitro-Ergebnisse zeigen, dass
der Erfolg von Hydrogelen als Nukleusersatz nicht nur vom Ersatzmaterial selbst
abhängt, sondern auch von der Wiederherstellung zerstörter
Bandscheibenstrukturen, wie der Grenzflächen zwischen Nukleus und Umgebung
sowie dem gesetzten Anulusdefekt.
Die vorliegende Dissertation konnte die Bedeutung iatrogen induzierter struktureller
Schädigungen der Bandscheibe für Nukleusersatzstrategien herausarbeiten und
stellt somit wesentliche Anforderungskriterien an das zukünftige Designkonzept von
Hydrogelen als Nukleusersatz für Tissue engineering Strategien an der Bandscheibe.
Hydrogele, die allein das mechanische Verhalten des Nukleus imitieren, können
ansonsten bei der Wiederherstellung der Mechanik des Gesamtsegmentes
versagen.Discogenic low back pain represents a major health disorder in the musculoskeletal
field. Innovative therapeutic approaches aim to regenerate the painfully degenerated
disc by restoring its original structure. Surgical procedures like nucleotomy, however,
which are necessary for the application of such therapeutic concepts, however,
perturb the mechanical competence of the disc. It has not been fully clarified whether
biomaterials for nucleus replacement are able to compensate for this. Therefore, a
combined experimental approach of in vivo, ex vivo, in vitro and in silico studies was
carried out to evaluate the efficiency of newly developed hydrogels for nucleus
replacement in an ovine disc model and to characterize the sheep as an animal
model in intervertebral disc research.
To establish a physiological loading protocol for the in vitro studies, intradiscal
pressure (IDP) was measured in three sheep over 24 hours. The total data set of the
first sheep was divided into an activity phase and a recovery phase, and the resulting
average pressures of both phases were calculated. Subsequently, the corresponding
axial forces were derived ex vivo. In vitro, a creep and recovery test was performed
on 36 ovine lumbar motion segments. Specimens were subjected to three loading
cycles, each consisting of a loading period of 15 minutes at 130 N and a recovery
period of 30 minutes at 58 N. IDP and segment height loss were investigated in six
different test groups: (i) INTACT; (ii) DEF-ANN: A small oblique incision in the
annulus. The defect was closed by suturing and with cyanoacrylate glue.
(iii) DEF-NUCs+g: Nucleus tissue was removed and subsequently re-implanted. The
annulus defect was closed as in DEF-ANN. (iv) DEF-NUCp: As in DEF-NUCs+g, the
nucleus tissue was removed and re-implanted. To avoid squeezing of nucleus tissue
into the inner annulus defect, sealant was applied using a plug. Finally, two hydrogels
were investigated as nucleus replacements: (v) DDAHA and (vi) iGG-MA. To better
interpret ambiguous results obtained in vitro, finite element analyses were conducted
on a disc model.
In vivo, ovine IDPs were almost consistently higher than the human. The lowest IDPs
were measured intra-operatively with ~0.5 MPa. The highest IDPs were found for
standing up or turning around, where IDPs were with 3.6 MPa and 2.6 MPa,
respectively, approximately two to four times higher within the ovine disc in comparison to humans. In the creep and recovery test, an isolated annulus incision
(DEF-ANN) did not affect segmental height-loss or fluid pressurization. DEF-NUCs+g,
DEF-NUCp, DDAHA and iGG-MA increased the height loss and decreased the fluid
pressurization compared with INTACT. Model predictions demonstrated substantial
effects of reductions in replaced nucleus water content, bulk modulus and osmotic
potential on disc height loss and pressure similar to the experimental measurements.
For these events in the model, the compression load transfer in the disc was
markedly altered by substantially increasing the load on the annulus when compared
with the nucleus.
The finding of comparably high ovine IDPs in vivo conflicts with the widespread belief
that, due to the horizontally aligned spine of quadrupeds, intradiscal loads should be
less than in the upright positioned spine of humans. Given the sometimes multiple
higher load amplitudes within the ovine disc combined with comparably low axial
external forces, current results suggest that the justification of using sheep for spinal
research questions should not be primarily based on differences in gait, but rather on
mechanical considerations regarding the scientific field of application. In vitro results
reveal that the success of hydrogels for nucleus replacement is not only dependent
on the implant material itself but also on the restoration of the environment perturbed
during surgery. The importance of the interface between the nucleus and its
surrounding structures and the relevance of an appropriate annulus closure to avoid
a displacement of implant material into the inner annulus defect are clearly indicated.
By emphasizing the importance of surgically induced structural damages to the
intervertebral disc, the present PhD thesis prescribes essential requirements for
future design concepts for hydrogels as nucleus replacements for tissue engineering
strategies of the intervertebral disc. Hydrogels that mimic the mechanical behavior of
the native nucleus alone may otherwise fail in restoring the mechanical competence
of the disc
Investigation of different hydrogels for nucleus replacement : a biomechanical study
Hydrogels are considered promising for disc
regeneration strategies. However, it is currently
unknown whether the destruction of the natural
interface between nucleus and surrounding
structures caused by nucleotomy and an inadequate
annulus closure diminishes the mechanical
competence of the disc.
To clarify these mechanisms and to evaluate
whether hydrogels are able to restore the
biomechanical behaviour of the disc a combined
in vivo and in vitro and approach was used
In vivo biofunctional evaluation of hydrogels for disc regeneration
Purpose Regenerative strategies aim to restore the original
biofunctionality of the intervertebral disc. Different
biomaterials are available, which might support disc
regeneration. In the present study, the prospects of success
of two hydrogels functionalized with anti-angiogenic peptides
and seeded with bone marrow derived mononuclear
cells (BMC), respectively, were investigated in an ovine
nucleotomy model.
Methods In a one-step procedure iliac crest aspirates
were harvested and, subsequently, separated BMC were
seeded on hydrogels and implanted into the ovine disc. For
the cell-seeded approach a hyaluronic acid-based hydrogel
was used. The anti-angiogenic potential of newly developed
VEGF-blockers was investigated on ionically crosslinked
metacrylated gellan gum hydrogels. Untreated discs
served as nucleotomy controls. 24 adult merino sheep were
used. After 6 weeks histological, after 12 weeks histological
and biomechanical analyses were conducted.
Results Biomechanical tests revealed no differences
between any of the implanted and nucleotomized discs. All
implanted discs significantly degenerated compared to
intact discs. In contrast, there was no marked difference
between implanted and nucleotomized discs. In tendency,
albeit not significant, degeneration score and disc height
index deteriorated for all but not for the cell-seeded
hydrogels from 6 to 12 weeks. Cell-seeded hydrogels
slightly decelerated degeneration.
Conclusions None of the hydrogel configurations was
able to regenerate biofunctionality of the intervertebral
disc. This might presumably be caused by hydrogel
extrusion. Great importance should be given to the development
of annulus sealants, which effectively exploit the
potential of (cell-seeded) hydrogels for biological disc
regeneration and restoration of intervertebral disc
functioningThis work was supported by the EU-project Disc Regeneration (NMP3-LA-2008-213904). Technical assistance of Iris Baum and the whole animal surgery team of the Institute of Orthopaedic Research and Biomechanics, Ulm, are gratefully acknowledged. DDAHA hydrogels were kindly provided by Cristina Longinotti (DDAHA, Anika Therapeutics, Abano Therme, Italy)
Integrating multidimensional data analytics for precision diagnosis of chronic low back pain
Low back pain (LBP) is a leading cause of disability worldwide, with up to 25% of cases become chronic (cLBP). Whilst multi-factorial, the relative importance of contributors to cLBP remains unclear. We leveraged a comprehensive multi-dimensional data-set and machine learning-based variable importance selection to identify the most effective modalities for differentiating whether a person has cLBP. The dataset included questionnaire data, clinical and functional assessments, and spino-pelvic magnetic resonance imaging (MRI), encompassing a total of 144 parameters from 1,161 adults with (n = 512) and without cLBP (n = 649). Boruta and random forest were utilised for variable importance selection and cLBP classification respectively. A multimodal model including questionnaire, clinical, and MRI data was the most effective in differentiating people with and without cLBP. From this, the most robust variables (n = 9) were psychosocial factors, neck and hip mobility, as well as lower lumbar disc herniation and degeneration. This finding persisted in an unseen holdout dataset. Beyond demonstrating the importance of a multi-dimensional approach to cLBP, our findings will guide the development of targeted diagnostics and personalized treatment strategies for cLBP patients
Relationship between intervertebral disc and facet joint degeneration: A probabilistic finite element model study
Nur 100 Jahre alt? Historische Friedhöfe zwischen Ignoranz, Akzeptanz und Relevanz
Friedhöfe und Bestattungen des 18. bis 20. Jh. werden auch in der Schweiz zunehmend zum Aufgaben- und Forschungsgebiet der Historischen Archäologie. Das zeigen Ausgrabungen der letzten Jahre in den Kantonen Bern, Basel und Graubünden
Effect of disc degeneration on the mechanical behavior of the human lumbar spine: a probabilistic finite element study
Separate the Sheep from the Goats: Use and Limitations of Large Animal Models in Intervertebral Disc Research
Effects of nucleotomy on segmental flexibility: a numerical analysis
Nucleotomy, a common treatment for disc herniations, aims to relieve pressure on spinal structures. While effective in alleviating symptoms, this intervention can compromise spinal stability. However, previous in vivo studies in sheep have demonstrated conflicting results with significant long-term stiffening of the spine following nucleotomy, with occasional spontaneous fusion of the affected motion segment. The objective of this study was to investigate the mechanical regulation of tissue adaptation processes post-nucleotomy using computational modeling. A parametric finite element model of the L4–L5 ovine spinal motion segment, developed previously, was modified to simulate surgical procedures that have been performed in prior in vivo studies. An iterative approach was used to simulate post-surgical tissue healing and adaptation processes. Two loading scenarios were simulated: one with combined axial compression and flexion moments, and the other incorporating axial rotation. An initial decrease in stability, with stiffness reduced by up to 50% due to disc decompression and nucleus removal, was followed by a gradual increase in stiffness over time as a consequence of bone healing and remodeling, with the most pronounced stiffening – up to 350% of the intact state – observed in axial rotation. The findings align with previous in vivo observations, suggesting that spontaneous fusion and increased rigidity may be natural consequences of mechano-biological adaptation. The results of this study highlight that healing processes accompanied by adaptive bone remodeling are directed towards restoration of spinal stability after nucleotomy. These findings align with previous in vivo observations, suggesting that spontaneous fusion and increased rigidity may be a natural consequence of post-nucleotomy mechano-biological adaptation. On the other hand, the results indicate a critical role of an appropriate loading regime on the outcome of these processes
- …
