42 research outputs found
Network analysis methods for studying microbial communities:A mini review
Microorganisms including bacteria, fungi, viruses, protists and archaea live as communities in complex and contiguous environments. They engage in numerous inter- and intra- kingdom interactions which can be inferred from microbiome profiling data. In particular, network-based approaches have proven helpful in deciphering complex microbial interaction patterns. Here we give an overview of state-of-the-art methods to infer intra-kingdom interactions ranging from simple correlation- to complex conditional dependence-based methods. We highlight common biases encountered in microbial profiles and discuss mitigation strategies employed by different tools and their trade-off with increased computational complexity. Finally, we discuss current limitations that motivate further method development to infer inter-kingdom interactions and to robustly and comprehensively characterize microbial environments in the future.</p
On the limits of 16S rRNA gene-based metagenome prediction and functional profiling
Molecular profiling techniques such as metagenomics, metatranscriptomics or metabolomics offer important insights into the functional diversity of the microbiome. In contrast, 16S rRNA gene sequencing, a widespread and cost-effective technique to measure microbial diversity, only allows for indirect estimation of microbial function. To mitigate this, tools such as PICRUSt2, Tax4Fun2, PanFP and MetGEM infer functional profiles from 16S rRNA gene sequencing data using different algorithms. Prior studies have cast doubts on the quality of these predictions, motivating us to systematically evaluate these tools using matched 16S rRNA gene sequencing, metagenomic datasets, and simulated data. Our con-tribution is threefold: (i) using simulated data, we investigate if technical biases could explain the discordance between inferred and expected results; (ii) considering human cohorts for type two diabetes, colorectal cancer and obesity, we test if health-related differential abundance measures of functional categories are concordant between 16S rRNA gene-inferred and metagenome-derived profiles and; (iii) since 16S rRNA gene copy number is an important confounder in functional profiles inference, we investigate if a customised copy number normalisation with the rrnDB database could improve the results. Our results show that 16S rRNA gene-based functional inference tools generally do not have the necessary sensitivity to delineate health-related functional changes in the microbiome and should thus be used with care. Furthermore, we outline important differences in the individual tools tested and offer recommendations for tool selection.</p
Primer, Pipelines, Parameters:Issues in 16S rRNA Gene Sequencing
Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus versus Adlercreutzia) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended. IMPORTANCE In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand. </p
Fecal bile acids and neutral sterols are associated with latent microbial subgroups in the human gut
Bile acids, neutral sterols, and the gut microbiome are intricately intertwined and each affects human health and metabolism. However, much is still unknown about this relationship. This analysis included 1280 participants of the KORA FF4 study. Fecal metabolites (primary and secondary bile acids, plant and animal sterols) were analyzed using a metabolomics approach. Dirichlet regression models were used to evaluate associations between the metabolites and twenty microbial subgroups that were previously identified using latent Dirichlet allocation. Significant associations were identified between 12 of 17 primary and secondary bile acids and several of the microbial subgroups. Three subgroups showed largely positive significant associations with bile acids, and six subgroups showed mostly inverse associations with fecal bile acids. We identified a trend where microbial subgroups that were previously associated with “healthy” factors were here inversely associated with fecal bile acid levels. Conversely, subgroups that were previously associated with “unhealthy” factors were positively associated with fecal bile acid levels. These results indicate that further research is necessary regarding bile acids and microbiota composition, particularly in relation to metabolic health
Handling of spurious sequences affects the outcome of high-throughput 16S rRNA gene amplicon profiling
16S rRNA gene amplicon sequencing is a popular approach for studying microbiomes. However, some basic concepts have still not been investigated comprehensively. We studied the occurrence of spurious sequences using defined microbial communities based on data either from the literature or generated in three sequencing facilities and analyzed via both operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) approaches. OTU clustering and singleton removal, a commonly used approach, delivered approximately 50% (mock communities) to 80% (gnotobiotic mice) spurious taxa. The fraction of spurious taxa was generally lower based on ASV analysis, but varied depending on the gene region targeted and the barcoding system used. A relative abundance of 0.25% was found as an effective threshold below which the analysis of spurious taxa can be prevented to a large extent in both OTU- and ASV-based analysis approaches. Using this cutoff improved the reproducibility of analysis, i.e., variation in richness estimates was reduced by 38% compared with singleton filtering using six human fecal samples across seven sequencing runs. Beta-diversity analysis of human fecal communities was markedly affected by both the filtering strategy and the type of phylogenetic distances used for comparison, highlighting the importance of carefully analyzing data before drawing conclusions on microbiome changes. In summary, handling of artifact sequences during bioinformatic processing of 16S rRNA gene amplicon data requires careful attention to avoid the generation of misleading findings. We propose the concept of effective richness to facilitate the comparison of alpha-diversity across studies
Namco:a microbiome explorer
16S rRNA gene profiling is currently the most widely used technique in microbiome research and allows the study of microbial diversity, taxonomic profiling, phylogenetics, functional and network analysis. While a plethora of tools have been developed for the analysis of 16S rRNA gene data, only a few platforms offer a user-friendly interface and none comprehensively covers the whole analysis pipeline from raw data processing down to complex analysis. We introduce Namco, an R shiny application that offers a streamlined interface and serves as a one-stop solution for microbiome analysis. We demonstrate Namco’s capabilities by studying the association between a rich fibre diet and the gut microbiota composition. Namco helped to prove the hypothesis that butyrate-producing bacteria are prompted by fibre-enriched intervention. Namco provides a broad range of features from raw data processing and basic statistics down to machine learning and network analysis, thus covering complex data analysis tasks that are not comprehensively covered elsewhere. Namco is freely available at https://exbio.wzw.tum.de/namco/.</p
Arrhythmic gut microbiome signatures predict risk of type 2 diabetes
Lifestyle, obesity, and the gut microbiome are important risk factors for metabolic disorders. We demonstrate in 1,976 subjects of a German population cohort (KORA) that specific microbiota members show 24-h oscillations in their relative abundance and identified 13 taxa with disrupted rhythmicity in type 2 diabetes (T2D). Cross-validated prediction models based on this signature similarly classified T2D. In an independent cohort (FoCus), disruption of microbial oscillation and the model for T2D classification was confirmed in 1,363 subjects. This arrhythmic risk signature was able to predict T2D in 699 KORA subjects 5 years after initial sampling, being most effective in combination with BMI. Shotgun metagenomic analysis functionally linked 26 metabolic pathways to the diurnal oscillation of gut bacteria. Thus, a cohort-specific risk pattern of arrhythmic taxa enables classification and prediction of T2D, suggesting a functional link between circadian rhythms and the microbiome in metabolic diseases. Reitmeier et al. show that specific gut microbes exhibit rhythmic oscillations in relative abundance and identified taxa with disrupted rhythmicity in individuals with type 2 diabetes (T2D). This arrhythmic signature contributed to the classification and prediction of T2D, suggesting functional links between circadian rhythmicity and the microbiome in metabolic diseases.</p
Arrhythmische Darmmikrobiom Signatur zur Risikoabschätzung von Type 2 Diabetes
Lifestyle, obesity, and the gut microbiome are important risk factors for metabolic disorders. In a German population cohort (N = 1,976), it was shown that specific microbiota members show 24-h oscillations and 13 taxa with disrupted rhythmicity in type 2 diabetes (T2D) were identified.Lifestyle, Übergewicht und das Darmmikrobiom sind wichtige Risikofaktoren bei metabolischen Erkrankungen. In einer deutschen Populationstudie (N = 1.967) konnte gezeigt werden, das spezifische Bakterien einem 24-Stunden Rhythmus folgen und 13 Taxa mit einer gestörten Rhythmizität in Type 2 Diabetiker (T2D) konnte identifiziert werden. Mithilfe dieser arrhythmische Risikosignatur konnte T2D klassifiziert werden und in 699 Individuen das Risiko zur Entwicklung von T2D vorhergesagt werden. Zusätzlich konnte ein funktionaler Zusammenhang mit dieser studienspezifischen Risikosignatur, Zirkadianen Rhythmen und metabolischen Erkrankungen erstellt werden
