808 research outputs found

    Study of narrowband single photon emitters in polycrystalline diamond films

    Full text link
    © 2014 AIP Publishing LLC. Quantum information processing and integrated nanophotonics require robust generation of single photon emitters on demand. In this work, we demonstrate that diamond films grown on a silicon substrate by microwave plasma chemical vapor deposition can host bright, narrowband single photon emitters in the visible - near infra-red spectral range. The emitters possess fast lifetime (∼ several ns), absolute photostability, and exhibit full polarization at excitation and emission. Pulsed and continuous laser excitations confirm their quantum behaviour at room temperature, while low temperature spectroscopy is performed to investigate inhomogeneous broadening. Our results advance the knowledge of solid state single photon sources and open pathways for their practical implementation in quantum communication and quantum information processing

    Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.

    Get PDF
    BACKGROUND: Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, relationships among sequence, conservation, and function are still poorly understood. RESULTS: We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of repurposed TFos, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest exaptation of some functional regulatory sequences into new function. Despite TFos repurposing, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TFos - target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. CONCLUSION: We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse using WGA. A comparative analysis of this correspondence unveiled the extent of the shared regulatory sequence across TFs and cell types under study. Importantly, a large part of the shared regulatory sequence is repurposed on the other species. This sequence, fueled by turnover events, provides a strong case for exaptation in regulatory elements

    Localization of Narrowband Single Photon Emitters in Nanodiamonds

    Full text link
    © 2016 American Chemical Society. Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors

    Polycyclic aromatic hydrocarbons in the dwarf galaxy IC 10

    Full text link
    Infrared observations from the Spitzer Space Telescope archive are used to study the dust component of the interstellar medium in the IC~10 irregular galaxy. Dust distribution in the galaxy is compared to the distributions of Hα\alpha and [SII] emission, neutral hydrogen and CO clouds, and ionizing radiation sources. The distribution of polycyclic aromatic hydrocarbons (PAH) in the galaxy is shown to be highly non-uniform with the mass fraction of these particles in the total dust mass reaching 4%. PAHs tend to avoid bright HII regions and correlate well with atomic and molecular gas. This pattern suggests that PAHs form in the dense interstellar gas. We propose that the significant decrease of the PAH abundance at low metallicity is observed not only globally (at the level of entire galaxies), but also locally (at least, at the level of individual HII regions). We compare the distribution of the PAH mass fraction to the distribution of high-velocity features, that we have detected earlier in wings of Hα\alpha and SII lines, over the entire available galaxy area. No conclusive evidence for shock destruction of PAHs in the IC~10 galaxy could be found.Comment: Accepted for publication in Astronomy Report

    Surveillance of HIV Drug Resistance in Children Receiving Antiretroviral Therapy: A Pilot Study of the World Health Organization's Generic Protocol in Maputo, Mozambique

    Get PDF
    Between 2007 and 2008, the Mozambique Ministry of Health conducted an assessment of human immunodeficiency virus drug resistance (HIVDR) using World Health Organization (WHO) methods in a cohort of children initiating antiretroviral therapy (ART) at the main pediatric ART referral center in Mozambique. It was shown that prior to ART initiation 5.4% of children had HIVDR that was associated with nevirapine perinatal exposure (P < .001). Twelve months after ART initiation, 77% had viral load suppression (<1000 copies/mL), exceeding the WHO target of ≥70%; 10.3% had HIVDR at 12 months. Baseline HIVDR (P = .04), maternal prevention of mother-to-child transmission (P = .02), and estimated days of missed medication (P = .03) predicted HIVDR at 12 months. As efforts to eliminate pediatric AIDS are intensified, implementation of ritonavir-boosted protease inhibitor regimens in children with prevention of mother-to-child transmission exposure may reduce risk of virological failure in our settin

    Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: NGC 628 and NGC 6946

    Get PDF
    We characterize the dust in NGC628 and NGC6946, two nearby spiral galaxies in the KINGFISH sample. With data from 3.6um to 500um, dust models are strongly constrained. Using the Draine & Li (2007) dust model, (amorphous silicate and carbonaceous grains), for each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons (PAH)s, (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the spiral structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). The overall dust/H mass ratio is estimated to be 0.0082+/-0.0017 for NGC628, and 0.0063+/-0.0009 for NGC6946, consistent with what is expected for galaxies of near-solar metallicity. Our derived dust masses are larger (by up to a factor 3) than estimates based on single-temperature modified blackbody fits. We show that the SED fits are significantly improved if the starlight intensity distribution includes a (single intensity) "delta function" component. We find no evidence for significant masses of cold dust T<12K. Discrepancies between PACS and MIPS photometry in both low and high surface brightness areas result in large uncertainties when the modeling is done at PACS resolutions, in which case SPIRE, MIPS70 and MIPS160 data cannot be used. We recommend against attempting to model dust at the angular resolution of PACS.Comment: To be published in Apj, September 2012. See the full version at http://www.astro.princeton.edu/~ganiano/Papers

    Far-Infrared Line Imaging of the Starburst Ring in NGC 1097 with the Herschel/PACS Spectrometer

    Get PDF
    NGC 1097 is a nearby SBb galaxy with a Seyfert nucleus and a bright starburst ring. We study the physical properties of the interstellar medium (ISM) in the ring using spatially resolved far-infrared spectral maps of the circumnuclear starburst ring of NGC 1097, obtained with the PACS spectrometer on board the Herschel Space Telescope. In particular, we map the important ISM cooling and diagnostic emission lines of [OI] 63 μ\mum, [OIII] 88 μ\mum, [NII] 122 μ\mum, [CII] 158 μ\mum and [NII] 205 μ\mum. We observe that in the [OI] 63 μ\mum, [OIII] 88 μ\mum, and [NII] 122 μ\mum line maps, the emission is enhanced in clumps along the NE part of the ring. We observe evidence of rapid rotation in the circumnuclear ring, with a rotation velocity of ~220kms km s^{-1}(inclinationuncorrected)measuredinalllines.The[OI]63 (inclination uncorrected) measured in all lines. The [OI] 63 \mum/[CII]158m/[CII] 158 \mumratiovariessmoothlythroughoutthecentralregion,andisenhancedonthenortheasternpartofthering,whichmayindicateastrongerradiationfield.Thisenhancementcoincideswithpeaksinthe[OI]63m ratio varies smoothly throughout the central region, and is enhanced on the northeastern part of the ring, which may indicate a stronger radiation field. This enhancement coincides with peaks in the [OI] 63 \mumand[OIII]88m and [OIII] 88 \mummaps.Variationsofthe[NII]122m maps. Variations of the [NII] 122 \mum/[NII]205m/[NII] 205 \mumratiocorrespondtoarangeintheionizedgasdensitybetween150and400cmm ratio correspond to a range in the ionized gas density between 150 and 400 cm^{-3}$.Comment: Accepted for publication on the A&A Herschel Special Issu

    Mapping far-IR emission from the central kiloparsec of NGC 1097

    Get PDF
    Using photometry of NGC 1097 from the Herschel PACS (Photodetector Array Camera and Spectrometer) instrument, we study the resolved properties of thermal dust continuum emission from a circumnuclear starburst ring with a radius ~ 900 pc. These observations are the first to resolve the structure of a circumnuclear ring at wavelengths that probe the peak (i.e. lambda ~ 100 micron) of the dust spectral energy distribution. The ring dominates the far-infrared (far-IR) emission from the galaxy - the high angular resolution of PACS allows us to isolate the ring's contribution and we find it is responsible for 75, 60 and 55% of the total flux of NGC 1097 at 70, 100 and 160 micron, respectively. We compare the far-IR structure of the ring to what is seen at other wavelengths and identify a sequence of far-IR bright knots that correspond to those seen in radio and mid-IR images. The mid- and far-IR band ratios in the ring vary by less than +/- 20% azimuthally, indicating modest variation in the radiation field heating the dust on ~ 600 pc scales. We explore various explanations for the azimuthal uniformity in the far-IR colors of the ring including a lack of well-defined age gradients in the young stellar cluster population, a dominant contribution to the far-IR emission from dust heated by older (> 10 Myr) stars and/or a quick smoothing of local enhancements in dust temperature due to the short orbital period of the ring. Finally, we improve previous limits on the far-IR flux from the inner ~ 600 pc of NGC 1097 by an order of magnitude, providing a better estimate of the total bolometric emission arising from the active galactic nucleus and its associated central starburst.Comment: Accepted for publication in the A&A Herschel Special Editio

    Resolving the far-IR line deficit : photoelectric heating and far-IR line cooling in NGC 1097 and NGC 4559

    Get PDF
    The physical state of interstellar gas and dust is dependent on the processes which heat and cool this medium. To probe heating and cooling of the interstellar medium over a large range of infrared surface brightness, on sub-kiloparsec scales, we employ line maps of [C II] 158 mu m, [O I] 63 mu m, and [N II] 122 mu m in NGC 1097 and NGC 4559, obtained with the Photodetector Array Camera & Spectrometer on board Herschel. We matched new observations to existing Spitzer Infrared Spectrograph data that trace the total emission of polycyclic aromatic hydrocarbons (PAHs). We confirm at small scales in these galaxies that the canonical measure of photoelectric heating efficiency, ([C II] + [O I])/TIR, decreases as the far-infrared (far-IR) color, nu f(nu)(70 mu m) nu f(nu)(100 mu m), increases. In contrast, the ratio of far-IR cooling to total PAH emission, ([C II] + [O I])/PAH, is a near constant similar to 6% over a wide range of far-IR color, 0.5 , derived from models of the IR spectral energy distribution. Emission from regions that exhibit a line deficit is characterized by an intense radiation field, indicating that small grains are susceptible to ionization effects. We note that there is a shift in the 7.7/11.3 mu m PAH ratio in regions that exhibit a deficit in ([C II] + [O I])/PAH, suggesting that small grains are ionized in these environments
    corecore