214 research outputs found

    On the physical association of the peculiar emission: Line stars HD 122669 and HD 122691

    Get PDF
    Spectroscopic and photometric observations indicate a physical association between the peculiar early-type emission-line stars HD 122669 and HD 122691. The latter has undergone a drastic change in the strength of its emission lines during the past twenty years. There is some indication that both stars vary with shorter time scales

    On the usefulness of finding charts Or the runaway carbon stars of the Blanco & McCarthy field 37

    Get PDF
    We have been recently faced with the problem of cross--identifying stars recorded in historical catalogues with those extracted from recent fully digitized surveys (such as DENIS and 2MASS). Positions mentioned in the old catalogues are frequently of poor precision, but are generally accompanied by finding charts where the interesting objects are flagged. Those finding charts are sometimes our only link with the accumulated knowledge of past literature. While checking the identification of some of these objects in several catalogues, we had the surprise to discover a number of discrepancies in recent works.The main reason for these discrepancies was generally the blind application of the smallest difference in position as the criterion to identify sources from one historical catalogue to those in more recent surveys. In this paper we give examples of such misidentifications, and show how we were able to find and correct them.We present modern procedures to discover and solve cross--identification problems, such as loading digitized images of the sky through the Aladin service at CDS, and overlaying entries from historical catalogues and modern surveys. We conclude that the use of good finding charts still remains the ultimate (though time--consuming) tool to ascertain cross--identifications in difficult cases.Comment: 4 pages, 1 figure, accepted by A&

    Yellow and Red Supergiants in the Large Magellanic Cloud

    Full text link
    Due to their transitionary nature, yellow supergiants provide a critical challenge for evolutionary modeling. Previous studies within M31 and the SMC show that the Geneva evolutionary models do a poor job at predicting the lifetimes of these short-lived stars. Here we extend this study to the LMC while also investigating the galaxy's red supergiant content. This task is complicated by contamination by Galactic foreground stars that color and magnitude criteria alone cannot weed out. Therefore, we use proper motions and the LMC's large systemic radial velocity (\sim278 km/s) to separate out these foreground dwarfs. After observing nearly 2,000 stars, we identified 317 probable yellow supergiants, 6 possible yellow supergiants and 505 probable red supergiants. Foreground contamination of our yellow supergiant sample was \sim80%, while that of the the red supergiant sample was only 3%. By placing the yellow supergiants on the H-R diagram and comparing them against the evolutionary tracks, we find that new Geneva evolutionary models do an exemplary job at predicting both the locations and the lifetimes of these transitory objects.Comment: Accepted for publication in the Ap

    Low-excitation blobs in the Magellanic Clouds

    Get PDF
    Aims : We study an unknown, or very poorly known, interstellar HII component in the Magellanic Clouds. This is the first study ever devoted to this class of objects, which we call Low-excitation blobs (LEBs). Methods : We used low-dispersion spectroscopy carried out at ESO to obtain emission line intensities of Ha, Hb, and [OIII] (4959+5007) for 15 objects in the Large Magellanic Cloud and 14 objects in the Small Magellanic Cloud. Results are displayed in excitation ([oiii]/Hb ratio) versus Hb luminosity diagrams. Results : We show the presence of an LEB component in the Magellanic Clouds and study its relationship with the already known class of high-excitation blobs (HEBs). The newly found LEBs are lower excitation counterparts of HEBs and are powered by less massive exciting stars. Further study of LEBs is expected to provide new pieces of information for a better understanding the low mass end of the upper initial mass function in the Magellanic Clouds.Comment: Accepted in A&

    V2051 Ophiuchi after superoutburst : out-of-plane material and the superhump light source

    Get PDF
    Aims. We performed a detailed spectroscopic analysis of the dwarf nova V2051 Oph at the end of its 1999 superoutburst. We studied and interpreted the simultaneous behaviour of various emission lines. Methods. We obtained high-resolution echelle spectroscopic data at ESO’s NTT with EMMI, covering the spectral range of 4000–7500 Å. The analysis was performed using standard IRAF tools. The indirect imaging technique of Doppler tomography was applied, in order to map the accretion disc and distinguish between the different emission sources. Results. The spectra are characterised by strong Balmer emission, together with lines of He i and the iron triplet Fe ii 42. All lines are double-peaked, but the blue-to-red peak strength and central absorption depth vary. The primary’s velocity was found to be 84.9 kms−1. The spectrograms of the emission lines reveal the prograde rotation of a disc-like emitting region and, for the Balmer and He i lines, an enhancement of the red-wing during eclipse indicates a bright spot origin. The modulation of the double-peak separation shows a highly asymmetric disc with non-uniform emissivity. This is confirmed by the Doppler maps, which apart from the disc and bright spot emission also indicate an additional region of enhanced emission in the 4th quadrant (+Vx, −Vy), which we associate with the superhump light source. Given the behaviour of the iron triplet and its distinct differences from the rest of the lines, we attribute its existence to an extended gas region above the disc. Its origin can be explained through the fluorescence mechanism

    NGC 346 in The Small Magellanic Cloud. IV. Triggered Star Formation in the HII Region N66

    Full text link
    Stellar feedback, expanding HII regions, wind-blown bubbles, and supernovae are thought to be important triggering mechanisms of star formation. Stellar associations, being hosts of significant numbers of early-type stars, are the loci where these mechanisms act. In this part of our photometric study of the star-forming region NGC346/N66 in the Small Magellanic Cloud, we present evidence based on previous and recent detailed studies, that it hosts at least two different events of triggered star formation and we reveal the complexity of its recent star formation history. In our earlier studies of this region (Papers I, III) we find that besides the central part of N66, where the bright OB stellar content of the association NGC346 is concentrated, an arc-like nebular feature, north of the association, hosts recent star formation. This feature is characterized by a high concentration of emission-line stars and Young Stellar Objects, as well as embedded sources seen as IR-emission peaks that coincide with young compact clusters of low-mass pre-main sequence stars. All these objects indicate that the northern arc of N66 encompasses the most current star formation event in the region. We present evidence that this star formation is the product of a different mechanism than that in the general area of the association, and that it is triggered by a wind-driven expanding HII region (or bubble) blown by a massive supernova progenitor, and possibly other bright stars, a few Myr ago. We propose a scenario according to which this mechanism triggered star formation away from the bar of N66, while in the bar of N66 star formation is introduced by the photo-ionizing OB stars of the association itself.Comment: Astrophysical Journal, In Press. 10 pages, 4 figures, emulateapj LaTeX style. Figures with Scaled-down resolution. Related Press Releases: http://www.nasa.gov/mission_pages/spitzer/news/spitzer-20081008.html and http://www.eso.org/public/outreach/press-rel/pr-2008/pr-34-08.htm

    Spectroscopic study of the N159/N160 complex in the Large Magellanic Cloud

    Get PDF
    We present a spectroscopic study of the N159/N160 massive-star forming region south of 30 Doradus in the Large Magellanic Cloud, classifying a total of 189 stars in the field of the complex. Most of them belong to O and early B spectral classes; we have also found some uncommon and very interesting spectra, including members of the Onfp class, a Be P Cygni star, and some possible multiple systems. Using spectral types as broad indicators of evolutionary stages, we considered the evolutionary status of the region as a whole. We infer that massive stars at different evolutionary stages are present throughout the region, favoring the idea of a common time for the origin of recent star formation in the N159/N160 complex as a whole, while sequential star formation at different rates is probably present in several subregions.Comment: 36 pages, 24 figures (127 spectra mostly OB stars, 4 field images). Published in The Astronomical Journa

    Discovery of Raman-scattered lines in the massive luminous emission-line star LHA 115-S 18

    Get PDF
    LHA 115-S 18 is a very peculiar emission-line star exhibiting the B[e] phenomenon. Located in the Small Magellanic Cloud, its spectrum shows features of an extremely wide range of excitation and ionization stages, extending from highly ionized atomic lines (Si IV, C IV, He II) in the UV and optical regions to molecular emission bands of CO and TiO in the optical and IR regions. The most distinguishing spectral characteristic of LHA 115-S 18 is the high variability detected in the He II {\lambda}4686 emission line, which can be a very conspicuous or completely invisible feature. In this work, we report on another peculiarity of LHA 115-S 18. From high-resolution optical spectra taken between 2000 and 2008, we discovered the appearance and strengthening of two emission features at {\lambda}6825 \AA, and {\lambda}7082 \AA,, which we identified as Raman-scattered lines. This is the first time these lines have been detected in the spectrum of a massive luminous B[e] star. As the classification of LHA 115-S 18 is highly controversial, we discuss how the discovery of the appearance of Raman-scattered lines in this peculiar star might help us to solve this puzzle.Comment: Letter accepted for publication in MNRAS. 5 pages, 3 figure

    Star formation in Cometary globule 1: the second generation

    Full text link
    C18O spectral line observations, NIR spectrosopy, narrow and broad band NIR imaging and stellar J,H,Ks photometry are used to analyse the structure of the archetype cometary globule 1 (CG 1) head and the extinction of stars in its direction. A young stellar object (YSO) associated with a bright NIR nebulosity and a molecular hydrogen object (a probable obscured HH-object), were discovered in the globule. Molecular hydrogen and Br_gamma line emission is seen in the direction of the YSO. The observed maximum optical extinction in the globule head is 9.2 magnitudes. The peak N(H2) column density and the total mass derived from the extinction are 9.0 10^21 cm-2 and and 16.7 Msun (d/300pc)^2. C18O emission in the globule head is detected in a 1.5'' by 4' area with a sharp maximum SW of the YSO. Three regions can be discerned in C18O line velocity and excitation temperature. Because of variations in the C18O excitation temperature the integrated line emission does not follow the optical extinction. It is argued that the variations in the C18O excitation temperatures are caused by radiative heating by NX Pup and interaction of the YSO with the parent cloud. No indication of a strong molecular outflow from the YSO is evident in the molecular line data. The IRAS point source 07178-4429 located in the CG 1 head resolves into two sources in the HIRES enhanced IRAS images. The 12 and 25 micron emission originates mainly in the star NX Puppis and the 60 and 100 micron emission in the YSO. The IRAS FIR luminosity of the YSO is 3.1 Lsun.Comment: Language checked v2. Accepted for publication in A&A. 16 pages, 20 figures. C18O data will be available electronicall

    The Evolution of Massive Stars. I. Red Supergiants in the Magellanic Clouds

    Full text link
    We investigate the red supergiant (RSG) content of the SMC and LMC using multi-object spectroscopy on a sample of red stars previously identified by {\it BVR} CCD photometry. We obtained high accuracy (<1<1 km s1^{-1}) radial velocities for 118 red stars seen towards the SMC and 167 red stars seen towards the LMC, confirming most of these (89% and 95%, respectively) as red supergiants (RSGs). Spectral types were also determined for most of these RSGs. We find that the distribution of spectral types is skewed towards earlier type at lower metallicities: the average (median) spectral type is K5-7 I in the SMC, M1 I in the LMC, and M2 I in the Milky Way. We argue that RSGs in the Magellanic Clouds are 100deg (LMC) and 300deg (SMC) cooler than Galactic RSGs of the same spectral type. We compare the distribution of RSGs in the H-R diagram to that of various stellar evolutionary models; we find that none of the models produce RSGs as cool and luminous as what is actually observed. In all of our H-R diagrams, however, there is an elegant sequence of decreasing effective temperatures with increasing luminosities; explaining this will be an important test of future stellar evolutionary models.Comment: Version with eps figures embedded can be obtained from ftp://ftp.lowell.edu/pub/massey/rsgs.ps.gz Accepted by the Astronomical Journa
    corecore