1,608 research outputs found
Hybrid Feedback Control Methods for Robust and Global Power Conversion
In this paper, the applicability and importance of hybrid system tools for the design of control algorithms for energy conversion in power systems is illustrated in two hybrid control designs, one pertaining to DC/DC conversion and the other to DC/AC inversion. In particular, the mathematical models considered consist of constrained switched differential equations/inclusions that include all possible modes of operation of the systems. Furthermore, the obtained models can be analyzed and their algorithms designed using hybrid system tools so as to attain key desired properties, such as stability, forward invariance, global convergence, and robustness. We argue that hybrid system tools provide a systematic approach for analysis and controller design of power systems. In particular, hybrid system tools usually leads to power quantities that have better performance and robustness to state perturbations. Furthermore, they provide guidelines on how to tune the controller parameters based on design requirements. These factors motivate the implementation of the proposed hybrid controllers in modern power conversion systems that use renewable energy sources. Simulations illustrating the main results and benchmark tests are included
Recommended from our members
Sufficient Conditions for Temporal Logic Specifications in Hybrid Dynamical Systems.
In this paper, we introduce operators, semantics, and conditions that, when possible, are solution-independent to guarantee basic temporal logic specifications for hybrid dynamical systems. Employing sufficient conditions for forward invariance and finite time attractivity of sets for such systems, we derive such sufficient conditions for the satisfaction of formulas involving temporal operators and atomic propositions. Furthermore, we present how to certify formulas that have more than one operator. Academic examples illustrate the results throughout the paper
Dynamical Properties of a Two-gene Network with Hysteresis
A mathematical model for a two-gene regulatory network is derived and several
of their properties analyzed. Due to the presence of mixed continuous/discrete
dynamics and hysteresis, we employ a hybrid systems model to capture the
dynamics of the system. The proposed model incorporates binary hysteresis with
different thresholds capturing the interaction between the genes. We analyze
properties of the solutions and asymptotic stability of equilibria in the
system as a function of its parameters. Our analysis reveals the presence of
limit cycles for a certain range of parameters, behavior that is associated
with hysteresis. The set of points defining the limit cycle is characterized
and its asymptotic stability properties are studied. Furthermore, the stability
property of the limit cycle is robust to small perturbations. Numerical
simulations are presented to illustrate the results.Comment: 55 pages, 31 figures.Expanded version of paper in Special Issue on
Hybrid Systems and Biology, Elsevier Information and Computation, 201
Robust hybrid global asymptotic stabilization of rigid body dynamics using dual quaternions
A hybrid feedback control scheme is proposed for stabilization of rigid body dynamics (pose and velocities) using unit dual quaternions, in which the dual quaternions and veloc- ities are used for feedback. It is well-known that rigid body attitude control is subject to topological constraints which often result in discontinuous control to avoid the unwinding phenomenon. In contrast, the hybrid scheme allows the controlled system to be robust in the presence of uncertainties, which would otherwise cause chattering about the point of discontinuous control while also ensuring acceptable closed-loop response characteristics. The stability of the closed-loop system is guaranteed through a Lyapunov analysis and the use of invariance principles for hybrid systems. Simulation results for a rigid body model are presented to illustrate the performance of the proposed hybrid dual quaternion feedback control scheme
Pointwise minimum norm control laws for hybrid systems
Minimum-norm control laws for hybrid dynamical systems are proposed. Hybrid systems are given by differential equations capturing the continuous dynamics or flows, and by difference equations capturing the discrete dynamics or jumps. The proposed control laws are defined as the pointwise minimum norm selection from the set of inputs guaranteeing a decrease of a control Lyapunov function. The cases of individual and common inputs during flows and jumps, as well as when inputs enter through one of the system dynamics, are considered. Examples illustrate the results. ©2013 IEEE
Recommended from our members
L-2 State Estimation With Guaranteed Convergence Speed in the Presence of Sporadic Measurements
This paper deals with the problem of estimating the state of a nonlinear time-invariant system in the presence of sporadically available measurements and external perturbations. An observer with a continuous intersample injection term is proposed. Such an intersample injection is provided by a linear dynamical system, whose state is reset to the measured output estimation error whenever a new measurement is available. The resulting system is augmented with a timer triggering the arrival of a new measurement and analyzed in a hybrid system framework. The design of the observer is performed to achieve exponential convergence with a given decay rate of the estimation error. Robustness with respect to external perturbations and L2-external stability from plant perturbations to a given performance output are considered. Computationally efficient algorithms based on the solution to linear matrix inequalities are proposed to design the observer. Finally, the effectiveness of the proposed methodology is shown in an example
One name, several (wo)men: reflections on Virginia Woolf's Orlando: a biography
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Comunicação e Expressão. Programa de Pós-Graduação em Letras/Inglês e Literatura Correspondente.This study discusses queer theory as regards the portrayal of Orlando in Virginia Woolf's novel, Orlando: A Biography. The character is first analyzed in light of the intersections between gender, race, class, and nation, and subsequently in terms of the poetic persona, understood from both liberal and radical perspectives. The findings show that the character can be understood to destabilize gender fixity in the construction of a poetic persona, which confirms the tentative hypothesis. Findings also show that there is a conflict in the novel as it presents at the same time a transgressive text and a normatizing subtext, a conflict that must be criticized for its implications in cultural studies regarding queer theories, gender studies, and emancipatory politics. Este estudo discute teoria queer na caracterização de Orlando no romance de Virginia Woolf, Orlando: A Biography. O personagem é analisado primeiramente em relação às intersecções entre gênero, raça, classe e nação, e na seqüência em termos de persona poética, entendida tanto de uma perspectiva liberal quanto radical. Os resultados do estudo mostram que o personagem desestabiliza a fixidez de gênero na construção da persona poética, o que confirma a hipótese inicial do estudo. Os resultados também mostram que existe um conflito no romance por este conter ao mesmo tempo um texto transgressivo e um subtexto normatizante, conflito este que deve ser criticado por suas implicações nos estudos culturais de teorias queer, estudos de gênero e políticas emancipatórias
- …
