476 research outputs found
Detection of high k turbulence using two dimensional phase contrast imaging on LHD
High k turbulence, up to 30 cm(-1), can be measured using the two dimensional CO₂ laser phase contrast imaging system on LHD. Recent hardware improvements and experimental results are presented. Precise control over the lens positions in the detection system is necessary because of the short depth of focus for high k modes. Remote controllable motors to move optical elements were installed, which, combined with measurements of the response to ultrasound injection, allowed experimental verification and shot-to-shot adjustment of the object plane. Strong high k signals are observed within the first 100-200 ms after the initial electron cyclotron heating (ECH) breakdown, in agreement with gyrotron scattering. During later times in the discharge, the entire k spectrum shifts to lower values (although the total amplitude does not change significantly), and the weaker high k signals are obscured by leakage of low k components at low frequency, and detector noise, at high frequency
Change of Fluctuation Properties during Non-local Temperature Rise in LHD from 2d Phase Contrast Imaging
Observations of the Prompt Gamma-Ray Emission of GRB 070125
The long, bright gamma-ray burst GRB 070125 was localized by the
Interplanetary Network. We present light curves of the prompt gamma-ray
emission as observed by Konus-WIND, RHESSI, Suzaku-WAM, and \textit{Swift}-BAT.
We detail the results of joint spectral fits with Konus and RHESSI data. The
burst shows moderate hard-to-soft evolution in its multi-peaked emission over a
period of about one minute. The total burst fluence as observed by Konus is
erg/cm (20 keV--10 MeV). Using the spectroscopic
redshift , we find that the burst is consistent with the ``Amati''
correlation. Assuming a jet opening angle derived from
broadband modeling of the burst afterglow, GRB 070125 is a significant outlier
to the ``Ghirlanda'' correlation. Its
collimation-corrected energy release ergs is
the largest yet observed.Comment: 25 pages, 6 figures; accepted for publication in ApJ. Improved
spectral fits and energetics estimate
The ultraluminous GRB 110918A
GRB 110918A is the brightest long GRB detected by Konus-WIND during its 19
years of continuous observations and the most luminous GRB ever observed since
the beginning of the cosmological era in 1997. We report on the final IPN
localization of this event and its detailed multiwavelength study with a number
of space-based instruments. The prompt emission is characterized by a typical
duration, a moderare of the time-integrated spectrum, and strong
hard-to-soft evolution. The high observed energy fluence yields, at z=0.984, a
huge isotropic-equivalent energy release
erg. The record-breaking energy flux observed at the peak of the short, bright,
hard initial pulse results in an unprecedented isotropic-equivalent luminosity
erg s. A tail of the soft gamma-ray
emission was detected with temporal and spectral behavior typical of that
predicted by the synchrotron forward-shock model. Swift/XRT and Swift/UVOT
observed the bright afterglow from 1.2 to 48 days after the burst and revealed
no evidence of a jet break. The post-break scenario for the afterglow is
preferred from our analysis, with a hard underlying electron spectrum and
ISM-like circumburst environment implied. We conclude that, among multiple
reasons investigated, the tight collimation of the jet must have been a key
ingredient to produce this unusually bright burst. The inferred jet opening
angle of 1.7-3.4 deg results in reasonable values of the collimation-corrected
radiated energy and the peak luminosity, which, however, are still at the top
of their distributions for such tightly collimated events. We estimate a
detection horizon for a similar ultraluminous GRB of for Konus-WIND,
and for Swift/BAT, which stresses the importance of GRBs as probes of
the early Universe.Comment: 22 pages, 20 figures, accepted for publication in Ap
Phase contrast imaging interferometer for edge density fluctuation measurements on LHD
A phase contrast interferometer employing a CO_2 laser (wavelength lambda_i = 10.6 ?m) is designed and installed in order to study density fluctuations on a large helical device. A 250×50 mm slab beam passes the edge of the plasma, where rho= r/a>0.65, and provides observations of edge density fluctuations. A spatial image of the integrated fluctuations is measured by a multichannel detector array, of which the effective spacing is 5 mm in the plasma. Measured wave number components are dominated by radial components, and within the range of 7.2×10^?2<=k<=0.63 mm^?1 and within the frequency range of 5?125 kHz. A clear difference in the fluctuation levels and peak wave numbers are observed between different discharges, which differ in the energy confinement
- …
