53 research outputs found
Improved Land Use Efficiency Through Spectral Beam Splitting in Agrivoltaic Farms
Installing photovoltaic (PV) collectors above arable land (Agrivoltaics) can aid with the shortage of available land area for solar power generation and food production. Most open field agrivoltaics are based on opaque PV devices which absorb photosynthetically active radiation (PAR, 400-700 nm), reducing crop yield and increasing variability in light distribution across the field. This research evaluates the performance of spectral beam splitter integrated photovoltaic (BSIPV) modules using a PV performance model. A high percentage (66 %) of PAR incident on the spectral beam splitter is transmitted effectively to the plants, while the near infrared radiation (NIR, > 700 nm) is reflected to the adjacent bifacial opaque photovoltaic module to generate power. In the model, seven rows of modules were placed uniformly across the field at a height of four meters from the ground. Considering a cool season (November – March) in Yuma, Arizona, in a conventional opaque PV agrivoltaic farm received 43 % lower total daylight integral (TDLI) across the season in comparison to open field with a coefficient of variation (ratio of standard deviation to mean expressed in percentage) of 56 % in TDLI across the field. On the other hand, the BSIPV agrivoltaic farm limited the drop in TDLI to 7 % in comparison to open field and the coefficient of variation to 14 % across the field. Thus, BSIPV showed a 36 % improvement in TDLI relative to the conventional opaque PV agrivoltaic farm. The results of the current study justify further research on the proposed collector concept
Performance Analysis of Photovoltaic Panels with Earth Water Heat Exchanger Cooling
The operating temperature is an important factor affecting the performance and life span of the Photovoltaic (PV) panels. The rising temperature can be maintained within certain limit using proper cooling techniques. In the present research a novel system for cooling of PV panels named as Earth Water Heat Exchanger (EWHE) is proposed and modelled in transient analysis simulation tool (TRNSYS v17.0) for the conditions of Pilani, Rajasthan (India).The various parameters which include cell temperature, PV power output and cell efficiency are observed with respect to variation in mass flow rate of fluid. Simulation results of the system without cooling show that the maximum PV panel temperature reached up to 79.31 °C with electrical efficiency dropped to 9% during peak sunshine hour. On the other hand, when PV panels are coupled with EWHE system, the panel temperature drops to 46.29 °C with an efficiency improving to 11% for a mass flow rate of 0.022 kg/s. In the end the cooling potential of EWHE is found to be in direct correlation with mass flow rate. The proposed system is very useful for the arid regions of western India which are blessed with high solar insolation throughout the year
Modelling and Simulation of Concentrating Photovoltaic System with Earth Water Heat Exchanger Cooling
Innovative use of a comedone extractor as an anesthetic tool for intradermal injections on scalp
Performance Analysis of Photovoltaic Panels with Earth Water Heat Exchanger Cooling
The operating temperature is an important factor affecting the performance and life span of the Photovoltaic (PV) panels. The rising temperature can be maintained within certain limit using proper cooling techniques. In the present research a novel system for cooling of PV panels named as Earth Water Heat Exchanger (EWHE) is proposed and modelled in transient analysis simulation tool (TRNSYS v17.0) for the conditions of Pilani, Rajasthan (India).The various parameters which include cell temperature, PV power output and cell efficiency are observed with respect to variation in mass flow rate of fluid. Simulation results of the system without cooling show that the maximum PV panel temperature reached up to 79.31 °C with electrical efficiency dropped to 9% during peak sunshine hour. On the other hand, when PV panels are coupled with EWHE system, the panel temperature drops to 46.29 °C with an efficiency improving to 11% for a mass flow rate of 0.022 kg/s. In the end the cooling potential of EWHE is found to be in direct correlation with mass flow rate. The proposed system is very useful for the arid regions of western India which are blessed with high solar insolation throughout the year
Experimental investigation of exergy performance of a water cooled hybrid photovoltaic thermal collector
Assessment of alumina/water nanofluid in a glazed tube and sheet photovoltaic/thermal system with geothermal cooling
- …
