763 research outputs found
An improved multistage switched inductor boost converter (improved M-SIBC) for renewable energy applications: a key to enhance conversion ratio
In this article, an improved Multistage Switched Inductor (M-SI) based power converter or Improved Multistage Switched Inductor Boost Converter (Improved M-SIBC) is proposed for renewable applications which provides a key to enhance voltage conversion ratio. In last decades, Switched Inductor (SI) and M-SI are the popular network/technique employed in DC-DC converter to achieve high voltage conversion ratio. An improved SI and M-SI network/technique is proposed to enhance the existing the voltage conversion capabilities of SI and M-SI by replacing central uncontrolled switches by polarized capacitor. The anticipated power converter configuration combines the feature of conventional boost converter and improved M-SI. The voltage conversion a capability is depends on the number of stages of M-SI and ON time of control switch. The operation modes and characteristics of proposed converter with steady state mathematical analysis for N-stages are discussed in detail. Moreover, the proposed converter compared with existing converter in terms of voltage conversion ratio and the detail of number of components is also provided. Matrix Laboratory R2016a simulation results of 100W proposed improved M-SIBC with considering three stages are provided and the results always shows a good agreement with theoretical analysis and also validates the improved M-SI network concept
X-Y converter family: A new breed of buck boost converter for high step-up renewable energy applications
A new breed of a buck boost converter, named as the XY converter family is proposed in this article. In the XY family, 16 topologies are presented which are highly suitable for renewable energy applications which require a high ratio of DC-DC converter; such as a photovoltaic multilevel inverter system, high voltage automotive applications and industrial drives. Compared to the traditional boost converter and existing recent converters, the proposed XY converter family has the ability to provide a higher output voltage by using less number of power devices and reactive components. Other distinct features of the XY converter family are i) Single control switch ii) Provide negative output voltage iii) Non-isolated topologies iv) High conversion ratio without making the use of high duty cycle and v) modular structure. XY family is compared with the recent high step-up converters and the detailed description of XY converter family and its topologies are presented. The simulation results are provided and it confirms the feasibility, functionality and validity of the concepts of the proposed XY converter family
A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter
Classical DC-DC converters used in high voltage direct current (HVDC) power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current) numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I) and fuzzy logic closed-loop controller to get high and stable output voltage. Complete hardware prototype of EHV is implemented and experimental tasks are carried out with digital signal processor (DSP) TMS320F2812. The control algorithms P-I, fuzzy logic and the pulse-width modulation (PWM) signals for N-channel MOSFET device are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions
A novel double quad-inverter configuration for multilevel twelve-phase open-winding converter
This paper work articulates the novel proposal of double quad-inverter configuration for multilevel twelve-phase open-winding ac converter. Modular power units are developed from reconfigured eight classical three-phase voltage source inverters (VSIs). Each VSI has one additional bi-directional switching device (MOSFET/IGBT) per each phase and linked neutral with two capacitors. An original modified single carrier five-level modulation (MSCFM) algorithm is developed and modulates each 2-level VSIs as equivalent to ones 5-level multilevel inverter. Observed set of results are presented with model based numerical simulation software’s (Matlab/PLECS) developments. Further, the results confirm the good agreement to the developed theoretical background. Proposed converter suits the need of low-voltage/high-current applications such as ac tractions and ‘More-Electric Aircraft’ propulsion system
Implementation of wavelet-based robust differential control for electric vehicle application
This research letter presents the modeling and simulation of electronic differential, employing a novel wavelet controller for two brushless dc motors. The proposed controller uses discrete wavelet transform to decompose the error between actual and reference speed. Error signal that is actually given by the electronic differential based on throttle and steering angle is decomposed into frequency components. Numerical simulation results are provided for both wavelet and proportional-integral-derivate controllers. In comparison, the proposed wavelet control technique provides greater stability and ensures smooth control of the two back driving wheels
Integrated motor drive for vehicle electrification: a step toward a more sustainable and efficient transportation system
The transportation sector is a big source of greenhouse gas (GHG) emissions. It is responsible for about 20% of all carbon dioxide (CO2) emissions in the world, and most of those emissions come from road transportation. The development of greater efficiency vehicles with much reduced fuel consumption and GHG emissions is critical for vehicle electrification and a sustainable transportation system. Electric vehicles (EVs) offer higher energy efficiency than internal combustion engines and emit no CO2 during operation. For future vehicle electrification, cost-effective electric powertrain options are required. The current state of development of two major components of the EV powertrain: motors and drives, is introduced in this editorial
A novel five-level optimized carrier multilevel PWM quad-inverter six-phase AC drive
A novel single carrier pulse-width modulation (PWM) for a new quad-inverter configuration for multilevel six-phase asymmetrical open-winding ac converter is proposed in this article. Modularity of the circuit consist of four standard two-level voltage source inverters (VSI) with slight modifications, i.e. one additional bi-direction switch (MOSFET/IGBT) in each phase and a link to neutral with two capacitors to generate increased output levels. Furthermore, original optimal single carrier zero-shifted five-level modulation (SCZSFM) algorithm is developed for each VSI to behave as equivalent to ones, a classical five-level multilevel inverter. Moreover, feasibility of the topology allows the VSIs to provide multilevel output voltage regardless of the open-winding electrical machine configuration. Also, the developed single carrier based PWM presents a straightforward solution compared to space vector modulation approaches for real time implementation. The total electric power shared among the four dc buses and quadruples the power capability of VSIs. Complete ac drive modules are developed numerically using simulation in MATLAB/PLECS software. Observed set of results are depicted in this paper under balanced conditions to show the effectiveness of the proposal in good agreement with theoretical background. This proposal suits the need of low-voltage/high-current applications to ac tractions, electrical vehicles and ‘More-Electric Aircraft’ propulsion systems
Dynamic Voltage Restorer (DVR): A Comprehensive Review of Topologies, Power Converters, Control Methods, and Modified Configurations
Power quality is a pressing concern and of the utmost importance for advanced and high-tech equipment in particular, whose performance relies heavily on the supply’s quality. Power quality issues like voltage sags/swells, harmonics, interruptions, etc. are defined as any deviations in current, voltage, or frequency that result in end-use equipment damage or failure. Sensitive loads like medical equipment in hospitals and health clinics, schools, prisons, etc. malfunction for the outages and interruptions, thereby causing substantial economic losses. For enhancing power quality, custom power devices (CPDs) are recommended, among which the Dynamic Voltage Restorer (DVR) is considered as the best and cost-effective solution. DVR is a power electronic-based solution to mitigate and compensate voltage sags. This paper provides a thorough discussion and comprehensive review of DVR topologies based on operations, power converters, control methods, and applications. The review compares the state-of-the-art in works of literature, and comparative study on power quality issues, the DVR principle along with its operation modes, the DVR components, the DVR topologies based on energy storage, the DVR topologies based on single-/three-phase power converters, and the DVR topologies based on control units that have different control processing stages. Furthermore, modified and improved configurations of the DVR, as well as its integration with distributed generations, are described. This work serves as a comprehensive and useful reference for those who have an interest in researching DVRs
Transistor clamped five level inverter using non-inverting double reference single carrier PWM technique for photovoltaic applications
This treatise deals with transistor clamped five level inverter Using Non-Inverting Double Reference Single Carrier PWM (NIDRSC PWM) Technique. Conventional or two level inverter have drawbacks like i) Requirement of fast switching devices ii) Very high dv/dt iii) High Electromagnetic Interferences (EMI) iv) Bulky filters v) Faster heating of switches and vi) Not suitable for high voltage applications. Multilevel Inverters (MLIs) are engaged to conquer the drawbacks of conventional two levels inverter. MLIs generate an AC voltage using small voltage steps obtained with the help of DC supplies or capacitor banks. To design the proposed five level inverter 5 numbers of power control switches and 8 diodes are required. The proposed inverter circuitry is investigated by using Non-Inverting Double Reference Single Carrier PWM (NIDRSC PWM) Technique in terms of harmonics content in output waveform. Under-modulation (modulation Index =0.85), unity (modulation Index =1) and over-modulation (modulation Index =1.25) PWM signal is obtained to drive control switches. Simulation results will confirm the functionality, design and operation of the proposed MLI and NIDRSC PWM Techniqu
An increase of a down-hole nuclear magnetic resonance tool’s reliability and accuracy by the cancellation of a multi-module DC/AC converter's output’s higher harmonics
Abstract: Described in this paper is a method for improving higher harmonic cancellation in Nuclear Magnetic Resonance (NMR) transmitters, which are used in oil and gas well logging tools operating at 175°C. Multi-module multi-level topology which combines the outputs of several identical power modules operating at 50% duty cycle at the fundamental frequency provide the versatility needed for both low harmonic sine voltage synthesis and amplitude control. Cancellation of the output voltage higher harmonics is achieved by creating fixed relative phase shifts between the individual modules of the multi-module converter. The amplitude control employs the Chireix-Doherty outphasing modulation principle with added feed forward correction circuitry. The possibilities of a 20% increase of the tool signal to noise ratio (SNR), as compared to that of a two-module transmitter has also demonstrated significant increase in the tool life expectancy
- …
