4,279 research outputs found

    Optical spectroscopy study on pressure-induced phase transitions in the three-dimensional Dirac semimetal Cd3_3As2_2

    Full text link
    We report a room-temperature optical reflectivity study performed on [112]-oriented Cd3_3As2_2 single crystals over a broad energy range under external pressure up to 10 GPa. The abrupt drop of the band dispersion parameter (zz-parameter) and the interruption of the gradual redshift of the bandgap at \sim4~GPa confirms the structural phase transition from a tetragonal to a monoclinic phase in this material. The pressure-induced increase of the overall optical conductivity at low energies and the continuous redshift of the high-energy bands indicate that the system evolves towards a topologically trivial metallic state, although a complete closing of the band gap could not be observed in the studied pressure range. Furthermore, a detailed investigation of the low-pressure regime suggests the possible existence of an intermediate state between 2 and 4~GPa , that might be a precursor of the structural phase transition or due to the lifted degeneracy of the Dirac nodes. Several optical parameters show yet another anomaly at 8~GPa, where low-temperature superconductivity was found in an earlier study.Comment: submitted to PR

    Radion/Dilaton-Higgs Mixing Phenomenology in Light of the LHC

    Get PDF
    Motivated by the bulk mixing ξR5HH\xi R_5 H^{\dagger}H between a massive radion and a bulk scalar Higgs in warped extra dimensions, we construct an effective four dimensional action that---via the AdS/CFT correspondence---describes the most general mixing between the only light states in the theory, the dilaton and the Higgs. Due to conformal invariance, once the Higgs scalar is localized in the bulk of the extra-dimension the coupling between the dilaton and the Higgs kinetic term vanishes, implying a suppressed coupling between the dilaton and massive gauge bosons. We comment on the implications of the mixing and couplings to Standard Model particles. Identifying the recently discovered 125 GeV resonance with the lightest Higgs-like mixed state ϕ\phi_{-}, we study the phenomenology and constraints for the heaviest radion-like state ϕ+\phi_{+}. In particular we find that in the small mixing scenario with a radion-like state ϕ+\phi_{+} in the mass range [150,250] GeV, the diphoton channel can provide the best chance of discovery at the LHC if the collaborations extend their searches into this energy range.Comment: 28 pages, 6 figures; v2: version published in JHE

    Comparative Analysis of Mathematical Models for Blood Flow in Tapered Constricted Arteries

    Get PDF
    Pulsatile flow of blood in narrow tapered arteries with mild overlapping stenosis in the presence of periodic body acceleration is analyzed mathematically, treating it as two-fluid model with the suspension of all the erythrocytes in the core region as non-Newtonian fluid with yield stress and the plasma in the peripheral layer region as Newtonian. The non-Newtonian fluid with yield stress in the core region is assumed as �i� Herschel-Bulkley fluid and �ii� Casson fluid. The expressions for the shear stress, velocity, flow rate, wall shear stress, plug core radius, and longitudinal impedance to flow obtained by Sankar �2010� for two-fluidHerschel-Bulkleymodel and Sankar and Lee �2011� for two-fluid Casson model are used to compute the data for comparing these fluid models. It is observed that the plug core radius, wall shear stress, and longitudinal impedance to flow are lower for the two-fluid H-B model compared to the corresponding flow quantities of the two-fluid Casson model. It is noted that the plug core radius and longitudinal impedance to flow increases with the increase of the maximum depth of the stenosis. The mean velocity and mean flow rate of two-fluid H-B model are higher than those of the two-fluid Casson model

    Implications of diphoton searches for a Radion in the Bulk-Higgs Scenario

    Full text link
    In this work we point out that the apparent diphoton excess initially presented by the ATLAS and CMS collaborations could have originated from a radion in the bulk Higgs scenario within a warped extra dimension. In this scenario the couplings of the radion to massive gauge bosons are suppressed, allowing it to evade existing searches. In the presence of mixing with the Higgs, due to the strong constraints from diboson searches, only points near what we denominate the alignment region were able to explain the diphoton signal and evade other experimental constraints. In light of the new measurements presented at ICHEP 2016 by both LHC collaborations, which do not confirm the initial diphoton excess, we study the current and future collider constraints on a radion within the bulk-Higgs scenario. We find that searches in the diphoton channel provide the most powerful probe of this scenario and already exclude large regions of parameter space, particularly for smaller warp factors. The radion has a sizeable branching ratio into top pairs and this channel may also give competitive constraints in the future. Finally, diHiggs searches can provide a complementary probe in the case of non-zero radion-Higgs mixing but strong alignment.Comment: 20 pages, 12 figures. Several changes including consequences from ICHEP2016. Final version accepted by journa
    corecore