5,095 research outputs found

    The H1 Forward Track Detector at HERA II

    Full text link
    In order to maintain efficient tracking in the forward region of H1 after the luminosity upgrade of the HERA machine, the H1 Forward Track Detector was also upgraded. While much of the original software and techniques used for the HERA I phase could be reused, the software for pattern recognition was completely rewritten. This, along with several other improvements in hit finding and high-level track reconstruction, are described in detail together with a summary of the performance of the detector.Comment: Minor revision requested by journal (JINST) edito

    A new multi-center approach to the exchange-correlation interactions in ab initio tight-binding methods

    Full text link
    A new approximate method to calculate exchange-correlation contributions in the framework of first-principles tight-binding molecular dynamics methods has been developed. In the proposed scheme on-site (off-site) exchange-correlation matrix elements are expressed as a one-center (two-center) term plus a {\it correction} due to the rest of the atoms. The one-center (two-center) term is evaluated directly, while the {\it correction} is calculated using a variation of the Sankey-Niklewski \cite{Sankey89} approach generalized for arbitrary atomic-like basis sets. The proposed scheme for exchange-correlation part permits the accurate and computationally efficient calculation of corresponding tight-binding matrices and atomic forces for complex systems. We calculate bulk properties of selected transition (W,Pd), noble (Au) or simple (Al) metals, a semiconductor (Si) and the transition metal oxide TiO2O_2 with the new method to demonstrate its flexibility and good accuracy.Comment: 17 pages, 5 figure

    Approximate ab initio calculation of vibrational properties of hydrogenated amorphous silicon with inner voids

    Full text link
    We have performed an approximate ab initio calculation of vibrational properties of hydrogenated amorphous silicon (a-Si:H) using a molecular dynamics method. A 216 atom model for pure amorphous silicon (a-Si) has been employed as a starting point for our a-Si:H models with voids that were made by removing a cluster of silicon atoms out of the bulk and terminating the resulting dangling bonds with hydrogens. Our calculation shows that the presence of voids leads to localized low energy (30-50 cm^{-1}) states in the vibrational spectrum of the system. The nature and localization properties of these states are analyzed by various visualization techniques.Comment: 15 pages with 6 PS figures, to appear in PRB in December 199

    Inclusion of Experimental Information in First Principles Modeling of Materials

    Full text link
    We propose a novel approach to model amorphous materials using a first principles density functional method while simultaneously enforcing agreement with selected experimental data. We illustrate our method with applications to amorphous silicon and glassy GeSe2_2. The structural, vibrational and electronic properties of the models are found to be in agreement with experimental results. The method is general and can be extended to other complex materials.Comment: 11 pages, 8 PostScript figures, submitted to J. Phys.: Condens. Matter in honor of Mike Thorpe's 60th birthda

    Mechanisms limiting the coherence time of spontaneous magnetic oscillations driven by DC spin-polarized currents

    Full text link
    The spin-transfer torque from a DC spin-polarized current can generate highly-coherent magnetic precession in nanoscale magnetic-multilayer devices. By measuring linewidths of spectra from the resulting resistance oscillations, we argue that the coherence time can be limited at low temperature by thermal deflections about the equilibrium magnetic trajectory, and at high temperature by thermally-activated transitions between dynamical modes. Surprisingly, the coherence time can be longer than predicted by simple macrospin simulations.Comment: 12 pages, 4 figure

    Evaluation of Exchange-Correlation Energy, Potential, and Stress

    Full text link
    We describe a method for calculating the exchange and correlation (XC) contributions to the total energy, effective potential, and stress tensor in the generalized gradient approximation. We avoid using the analytical expressions for the functional derivatives of E_xc*rho, which depend on discontinuous second-order derivatives of the electron density rho. Instead, we first approximate E_xc by its integral in a real space grid, and then we evaluate its partial derivatives with respect to the density at the grid points. This ensures the exact consistency between the calculated total energy, potential, and stress, and it avoids the need of second-order derivatives. We show a few applications of the method, which requires only the value of the (spin) electron density in a grid (possibly nonuniform) and returns a conventional (local) XC potential.Comment: 7 pages, 3 figure

    First-Principles Studies of Hydrogenated Si(111)--7×\times7

    Full text link
    The relaxed geometries and electronic properties of the hydrogenated phases of the Si(111)-7×\times7 surface are studied using first-principles molecular dynamics. A monohydride phase, with one H per dangling bond adsorbed on the bare surface is found to be energetically favorable. Another phase where 43 hydrogens saturate the dangling bonds created by the removal of the adatoms from the clean surface is found to be nearly equivalent energetically. Experimental STM and differential reflectance characteristics of the hydrogenated surfaces agree well with the calculated features.Comment: REVTEX manuscript with 3 postscript figures, all included in uu file. Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.htm

    Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment

    Full text link
    We present an experimental study of an optomechanical system formed by a vibrating thin semi-transparent membrane within a high-finesse optical cavity. We show that the coupling between the optical cavity modes and the vibrational modes of the membrane can be tuned by varying the membrane position and orientation. In particular we demonstrate a large quadratic dispersive optomechanical coupling in correspondence with avoided crossings between optical cavity modes weakly coupled by scattering at the membrane surface. The experimental results are well explained by a first order perturbation treatment of the cavity eigenmodes.Comment: 10 pages, 6 figure

    Fast algorithm for calculating two-photon absorption spectra

    Full text link
    We report a numerical calculation of the two-photon absorption coefficient of electrons in a binding potential using the real-time real-space higher-order difference method. By introducing random vector averaging for the intermediate state, the task of evaluating the two-dimensional time integral is reduced to calculating two one-dimensional integrals. This allows the reduction of the computation load down to the same order as that for the linear response function. The relative advantage of the method compared to the straightforward multi-dimensional time integration is greater for the calculation of non-linear response functions of higher order at higher energy resolution.Comment: 4 pages, 2 figures. It will be published in Phys. Rev. E on 1, March, 199
    corecore