267 research outputs found

    Coherent response of a low T_c Josephson junction to an ultrafast laser pulse

    Full text link
    By irradiating with a single ultrafast laser pulse a superconducting electrode of a Josephson junction it is possible to drive the quasiparticles (qp's) distribution strongly out of equilibrium. The behavior of the Josephson device can, thus, be modified on a fast time scale, shorter than the qp's relaxation time. This could be very useful, in that it allows fast control of Josephson charge qubits and, in general, of all Josephson devices. If the energy released to the top layer contact S1S1 of the junction is of the order of μJ\sim \mu J, the coherence is not degradated, because the perturbation is very fast. Within the framework of the quasiclassical Keldysh Green's function theory, we find that the order parameter of S1S1 decreases. We study the perturbed dynamics of the junction, when the current bias is close to the critical current, by integrating numerically its classical equation of motion. The optical ultrafast pulse can produce switchings of the junction from the Josephson state to the voltage state. The switches can be controlled by tuning the laser light intensity and the pulse duration of the Josephson junction.Comment: 17 pages, 5 figure

    Photon Self-Induced Spin to Orbital Conversion in TGG crystal at high laser power

    Full text link
    In this paper, we present experimental evidence of a newly discovered third-order nonlinear optical process Self-Induced Spin-to-Orbital Conversion (SISTOC) of the photon angular momentum. This effect is the physical mechanism at the origin of the depolarization of very intense laser beams propagating in isotropic materials. The SISTOC process, like self-focusing, is triggered by laser heating leading to a radial temperature gradient in the medium. In this work we tested the occurrence of SISTOC in a terbium gallium garnet (TGG) rod for an impinging laser power of about 100~W. To study the SISTOC process we used different techniques: polarization analysis, interferometry and tomography of the photon orbital angular momentum. Our results confirm, in particular, that the apparent depolarization of the beam is due to the occurrence of maximal entanglement between the spin and orbital angular momentum of the photons undergoing the SISTOC process. This explanation of the true nature of the depolarization mechanism could be of some help in finding novel methods to reduce or to compensate for this usually unwanted depolarization effect in all cases where very high laser power and good beam quality are required.Comment: 6 pages, 10 figures, submitte

    General theory of electromagnetic fluctuations near a homogeneous surface, in terms of its reflection amplitudes

    Full text link
    We derive new general expressions for the fluctuating electromagnetic field outside a homogeneous material surface. The analysis is based on general results from the thermodynamics of irreversible processes, and requires no consideration of the material interior, as it only uses knowledge of the reflection amplitudes for its surface. Therefore, our results are valid for all homogeneous surfaces, including layered systems and metamaterials, at all temperatures. In particular, we obtain new formulae for the near-field region, which are important for interpreting the numerous current experiments probing proximity effects for macroscopic and/or microscopic bodies separated by small empty gaps. By use of Onsager's reciprocity relations, we obtain also the general symmetry properties that must be satisfied by the reflection matrix of any material.Comment: 5 page

    Postmodern String Theory: Stochastic Formulation

    Full text link
    In this paper we study the dynamics of a statistical ensemble of strings, building on a recently proposed gauge theory of the string geodesic field. We show that this stochastic approach is equivalent to the Carath\'eodory formulation of the Nambu-Goto action, supplemented by an averaging procedure over the family of classical string world-sheets which are solutions of the equation of motion. In this new framework, the string geodesic field is reinterpreted as the Gibbs current density associated with the string statistical ensemble. Next, we show that the classical field equations derived from the string gauge action, can be obtained as the semi-classical limit of the string functional wave equation. For closed strings, the wave equation itself is completely analogous to the Wheeler-DeWitt equation used in quantum cosmology. Thus, in the string case, the wave function has support on the space of all possible spatial loop configurations. Finally, we show that the string distribution induces a multi-phase, or {\it cellular} structure on the spacetime manifold characterized by domains with a purely Riemannian geometry separated by domain walls over which there exists a predominantly Weyl geometry.Comment: 24pages, ReVTe

    Spin-orbit hybrid entanglement of photons and quantum contextuality

    Get PDF
    We demonstrate electromagnetic quantum states of single photons and of correlated photon pairs exhibiting "hybrid" entanglement between spin and orbital angular momentum. These states are obtained from entangled photon pairs emitted by spontaneous parametric down conversion, by employing a qq-plate for coupling the spin and orbital degrees of freedom of a photon. Entanglement and contextual quantum behavior (that is also non-local, in the case of photon pairs) is demonstrated by the reported violation of the Clauser-Horne-Shimony-Holt inequality. In addition a classical analog of the hybrid spin-orbit photonic entanglement is reported and discussed.Comment: 5 pages, 3 figure

    Quantum many particle systems in ring-shaped optical lattices

    Full text link
    In the present work we demonstrate how to realize 1d-optical closed lattice experimentally, including a {\it tunable} boundary phase-twist. The latter may induce ``persistent currents'', visible by studing the atoms' momentum distribution. We show how important phenomena in 1d-physics can be studied by physical realization of systems of trapped atoms in ring-shaped optical lattices. A mixture of bosonic and/or fermionic atoms can be loaded into the lattice, realizing a generic quantum system of many interacting particles.Comment: 10 pages, 5 figures. To be published in PR

    Optical measurement of torque exerted on an elongated object by a non-circular laser beam

    Get PDF
    We have developed a scheme to measure the optical torque, exerted by a laser beam on a phase object, by measuring the orbital angular momentum of the transmitted beam. The experiment is a macroscopic simulation of a situation in optical tweezers, as orbital angular momentum has been widely used to apply torque to microscopic objects. A hologram designed to generate LG02 modes and a CCD camera are used to detect the orbital component of the beam. Experimental results agree with theoretical numerical calculations, and the strength of the orbital component suggest its usefulness in optical tweezers for micromanipulation.Comment: 6 pages, 7 figures, v2: minor typographical correction

    Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons

    Get PDF
    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here, we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, and we show that it rapidly approaches a multiple of the Zak phase in the long time limit. Then we measure the Zak phase in a photonic quantum walk, by direct observation of the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe, and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general, as it can be applied to all one-dimensional platforms simulating static or Floquet chiral systems.Comment: 10 pages, 7 color figures (incl. appendices) Close to the published versio

    Optical microrheology using rotating laser-trapped particles

    Get PDF
    We demonstrate an optical system that can apply and accurately measure the torque exerted by the trapping beam on a rotating birefringent probe particle. This allows the viscosity and surface effects within liquid media to be measured quantitatively on a micron-size scale using a trapped rotating spherical probe particle. We use the system to measure the viscosity inside a prototype cellular structure.Comment: 5 pages, 4 figures. v2: bibliographic details, minor text correction

    Polarization control of single photon quantum orbital angular momentum states

    Full text link
    The orbital angular momentum of photons, being defined in an infinitely dimensional discrete Hilbert space, offers a promising resource for high-dimensional quantum information protocols in quantum optics. The biggest obstacle to its wider use is presently represented by the limited set of tools available for its control and manipulation. Here, we introduce and test experimentally a series of simple optical schemes for the coherent transfer of quantum information from the polarization to the orbital angular momentum of single photons and vice versa. All our schemes exploit a newly developed optical device, the so-called "q-plate", which enables the manipulation of the photon orbital angular momentum driven by the polarization degree of freedom. By stacking several q-plates in a suitable sequence, one can also access to higher-order angular momentum subspaces. In particular, we demonstrate the control of the orbital angular momentum mm degree of freedom within the subspaces of m=2|m|=2 \hbar and m=4|m|=4\hbar per photon. Our experiments prove that these schemes are reliable, efficient and have a high fidelity.Comment: 9 pages, 8 figure
    corecore