264 research outputs found

    Land for Maine’s Future Program Government Evaluation Act Report, 2015

    Get PDF
    https://digitalmaine.com/lmf_docs/1001/thumbnail.jp

    Financement participatif et interactions avec la fiscalité

    Get PDF

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC

    Get PDF
    This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing

    Exposure to Prenatal Maternal Distress and Infant White Matter Neurodevelopment

    Get PDF
    The prenatal period represents a critical time for brain growth and development. These rapid neurological advances render the fetus susceptible to various influences with life-long implications for mental health. Maternal distress signals are a dominant early life influence, contributing to birth outcomes and risk for offspring psychopathology. This prospective longitudinal study evaluated the association between prenatal maternal distress and infant white matter microstructure. Participants included a racially and socioeconomically diverse sample of 85 mother–infant dyads. Prenatal distress was assessed at 17 and 29 weeks’ gestational age (GA). Infant structural data were collected via diffusion tensor imaging (DTI) at 42–45 weeks’ postconceptional age. Findings demonstrated that higher prenatal maternal distress at 29 weeks’ GA was associated with increased fractional anisotropy, b = .283, t(64) = 2.319, p = .024, and with increased axial diffusivity, b = .254, t(64) = 2.067, p = .043, within the right anterior cingulate white matter tract. No other significant associations were found with prenatal distress exposure and tract fractional anisotropy or axial diffusivity at 29 weeks’ GA, or earlier in gestation

    Soutenir les transitions vers les études supérieures par la collaboration interordres. Rapport de recherche final présenté à l’Université du Québec dans le cadre du projet Transitions réussies vers les études supérieures : un défi interordres.

    Get PDF
    En s’intéressant au processus de développement de la collaboration au sein de la principale constituante du projet Transition réussies vers les études supérieures: un défi interordres (TrRéussies) (2022-2025), soit les regroupements régionaux, cette recherche vise à décrire et mieux comprendre les processus de création et de déploiement des regroupements régionaux, à identifier les principaux enjeux et obstacles rencontrés et à dégager des facilitateurs menant au développement d’une collaboration. Les résultats montrent que la création d’espace collaboratif est pertinente si le degré de complexité de la situation à traiter est suffisamment complexe, si le niveau d’interdépendance est fort et si un certain nombre de caractéristiques sont présentes, tels que la compréhension univoque et l’adhésion aux buts, la confiance, la présence d’un leadership adapté, l’engagement des parties prenantes, la présence d’un dialogue et la transparence. Tous ces critères sont interreliés de manière stratégique et leur intensité varie en cours de processus. L’application de notre indice permet de conclure que deux regroupements sur six étaient en collaboration

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore