37 research outputs found
Recommended from our members
Regional climate impacts of a possible future grand solar minimum.
This is the final published version. It first appeared at http://www.nature.com/ncomms/2015/150623/ncomms8535/full/ncomms8535.html.Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations.This work was supported by the Joint DECC/Defra Met Office Hadley Centre Climate
Programme (GA01101) and also by the EU project SPECS funded by the European
Commission’s Seventh Framework Research Programme under the grant agreement
308378 (Met Office Hadley Centre authors), by the NERC National Centre for
Atmospheric Science (NCAS) Climate directorate (L.J.G. and A.C.M.), an ERC ACCI
grant (A.C.M) and an AXA Postdoctoral Fellowship (A.C.M.)
Recommended from our members
The low-resolution version of HadGEM3 GC3.1: development and evaluation for global climate
A new climate model, HadGEM3 N96ORCA1, is presented that is part of the GC3.1 configuration of HadGEM3. N96ORCA1 has a horizontal resolution of ~135 km in the atmosphere and 1° in the ocean and requires an order of magnitude less computing power than its medium-resolution counterpart, N216ORCA025, while retaining a high degree of performance traceability. Scientific performance is compared both to observations and the N216ORCA025 model. N96ORCA1 reproduces observed climate mean and variability almost as well as N216ORCA025. Patterns of biases are similar across the two models. In the north-west Atlantic, N96ORCA1 shows a cold surface bias of up to 6K, typical of ocean models of this resolution. The strength of the Atlantic meridional overturning circulation (16 to 17 Sv) matches observations. In the Southern Ocean, a warm surface bias (up to 2K) is smaller than in N216ORCA025 and linked to improved ocean circulation. Model El Niño/Southern Oscillation and Atlantic Multidecadal Variability are close to observations. Both the cold bias in the Northern hemisphere (N96ORCA1) and the warm bias in the Southern hemisphere (N216ORCA025) develop in the first few decades of the simulations. As in many comparable climate models, simulated interhemispheric gradients of top-of-atmosphere radiation are larger than observations suggest, with contributions from both hemispheres. HadGEM3 GC3.1 N96ORCA1 constitutes the physical core of the UK Earth System Model (UKESM1) and will be used extensively in the Coupled Model Intercomparison Project 6 (CMIP6), both as part of UKESM1 and as a stand-alone coupled climate model
Will 2024 be the first year that global temperature exceeds 1.5°C?
Global mean near surface temperature change is the key metric by which our warming climate is monitored and for which international climate policy is set. At the end of each year the Met Office issues a global mean temperature forecast for the coming year. Following on from the new record in 2023, we predict that 2024 will likely (76% chance) be a new record year with a 1-in-3 chance of exceeding 1.5°C above pre-industrial. Whilst a one-year temporary exceedance of 1.5°C would not constitute a breach of the Paris Agreement target, our forecast highlights how close we are now to this. Our 2024 forecast is primarily driven by the strong warming trend of +0.2°C/decade (1981–2023) and secondly by the lagged warming effect of a strong tropical Pacific El Niño event. We highlight that 2023 itself was significantly warmer than the Met Office DePreSys3 forecast, with much of this additional observed warming coming from the southern hemisphere, the cause of which requires further understanding. © 2024 Crown copyright. Atmospheric Science Letters published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society. This article is published with the permission of the Controller of HMSO and the King's Printer for Scotland
Recommended from our members
Skilful interannual climate prediction from two large initialised model ensembles
Climate prediction skill on the interannual timescale, which sits between that of seasonal and decadal, is investigated using large ensembles from the Met Office and CESM initialised coupled prediction systems. A key goal is to determine what can be skillfully predicted about the coming year when combining these two ensembles together. Annual surface temperature predictions show good skill at both global and regional scales, but skill diminishes when the trend associated with global warming is removed. Skill for the extended boreal summer (months 7-11) and winter (months 12-16) seasons are examined, focusing on circulation and rainfall predictions. Skill in predicting rainfall in tropical monsoon regions is found to be significant for the majority of regions examined. Skill increases for all regions when active ENSO seasons are forecast. There is some regional skill for predicting extratropical circulation, but predictive signals appear to be spuriously weak
ENSO asymmetry: the search for extreme El Niño events in HadGEM
&lt;p&gt;Analysis of a long control run of the Hadley Centre coupled model shows that ENSO asymmetry is weak. We use the same model in our seasonal and decadal prediction systems, and while on seasonal timescales the initialised prediction realistically captures the amplitude of extreme El Ni&amp;#241;o events, on longer timescales the predictions revert to the control behaviour i.e. there are no very large El Ni&amp;#241;o events. This may impact on our ability evaluate the risk of extreme regional events. Here we show results exploring asymmetry in both the control model, and also from a number of perturbed parameter experiments, each a plausible realisation of the control.&lt;/p&gt;</jats:p
Predictability of European Winter 2020/21
&lt;p&gt;Winter (DJF) 2020/21 in the North Atlantic/European sector was characterised by the negative phase of the North Atlantic Oscillation (NAO). However, this was not well forecast by the leading seasonal prediction systems. We focus on forecasts from GloSea5, which was the Met Office operational seasonal prediction system at the time. Forecasts initialised in November 2020, at the 1-month lead time, indicated that a positive NAO was likely, although a few ensemble members did agree with the eventual outcome. Analysis suggests that the sudden stratospheric warming (SSW) that occurred in early January 2021 and an active MJO in late January/early February 2021 probably contributed to the observed negative NAO. In particular, GloSea5 indicated a rather low probability for SSW activity, which may well have been exacerbated by the forecast of a stronger than observed La Ni&amp;#241;a by this system.&lt;/p&gt;</jats:p
ENSO phase-locking behavior in climate models: from CMIP5 to CMIP6
Abstract
The phase-locking behavior of El Niño-Southern Oscillation (ENSO) in models from Coupled Model Intercomparison Project (CMIP) phase 5 to phase 6 is assessed in terms of the locking-month of ENSO peak and the sharpness of locking tendency. Overall, a robust improvement exists in CMIP6. Compared to CMIP5, more CMIP6 models truly reproduce the locking-month in November-January. Meanwhile, the sharpness of phase-locking in CMIP6 models also improves, though most of them are still far from the observations. The locking-month is verified to be highly corresponding to the phase of seasonal modulation of ENSO’s instabilities. The sharpness is mainly controlled by the intensity of this modulation and noise. Compared to CMIP5, CMIP6 models generally simulate these affecting factors better. Besides, models displaying an exaggerated semi-annual variation of ENSO’s instabilities simulate the ENSO phase-locking relative-poorly, and these models show no reduction from CMIP5 to CMIP6.</jats:p
Intraseasonal effects of El Niño Southern Oscillation on North Atlantic climate
Trabajo presentado en la European Geosciences Union General Assembly, celebrada en Viena (Austria), del 8 al 13 de abril de 2018El Niño Southern Oscillation (ENSO) is known to impact the North Atlantic – European (NAE) climate, with
the strongest influence in late winter. In that period, the ENSO signal reaches the NAE sector via tropospheric and
stratospheric pathways, projecting on a North Atlantic Oscillation pattern. However, this signal is not strengthening
during winter. Some studies have suggested that the ENSO signal in NAE shifts from early to late winter, but the
teleconnections involved in the first winter subperiod are still unclear.
Here we examine the ENSO teleconnection to NAE in early winter and aim to characterize the possible mechanisms
involved in that teleconnection by means of observations, reanalysis data and the output of different types of model
simulations. Our results show that the intra-seasonal winter shift of the NAE response to ENSO occurs for both El
Niño and La Niña and is robust in observations and initialized predictions, but is not reproduced by free-running
CMIP5 models. The teleconnection is established only through the troposphere in early winter and is related to
ENSO-associated perturbations starting in the Gulf of Mexico that reach the NAE region. The origin of those
perturbations might be associated with ENSO-related precipitation anomalies over the Gulf of Mexico and Central
America.Peer reviewe
