9,614 research outputs found

    High-Performance Screen-Printed Thermoelectric Films on Fabrics.

    Get PDF
    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi0.5Sb1.5Te3 or n-type Bi2Te2.7Se0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively

    Use and outcomes of targeted therapies in early and metastatic HER2-positive breast cancer in Australia: Protocol detailing observations in a whole of population cohort

    Get PDF
    Background: The management of human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) has changed dramatically with the introduction and widespread use of HER2-targeted therapies. However, there is relatively limited real-world information on patterns of use, effectiveness and safety in whole of population cohorts. The research programme detailed in this protocol will generate evidence on the prescribing patterns, safety monitoring and outcomes of patients with BC treated with HER2- targeted therapies in Australia. Methods/design: Our ongoing research programme will involve a series of retrospective cohort studies that include every patient accessing Commonwealth-funded HER2-targeted therapies for the treatment of early BC and advanced BC in Australia. At the time of writing, our cohorts consist of 11 406 patients with early BC and 5631 with advanced BC who accessed trastuzumab and lapatinib between 2001 and 2014. Pertuzumab and trastuzumab emtansine were publicly funded for metastatic BC in 2015, and future data updates will include patients accessing these medicines. We will use dispensing claims for cancer and other medicines, medical service claims and demographics data for each patient accessing HER2- targeted therapies to undertake this research. Ethics and dissemination: Ethics approval has been granted by the Population Health Service Research Ethics Committee and data access approval has been granted by the Australian Department of Human Services (DHS) External Review Evaluation Committee. Our findings will be reported in peer-reviewed publications, conference presentations and policy forums. By providing detailed information on the use and outcomes associated with HER2-targeted therapies in a national cohort treated in routine clinical care, our research programme will better inform clinicians and patients about the real-world use of these treatments and will assist third-party payers to better understand the use and economic costs of these treatments

    Quantitative Assessment of Upper Limb Motion in Neurorehabilitation Utilizing Inertial Sensors

    Get PDF
    Two inertial sensor systems were developed for 3-D tracking of upper limb movement. One utilizes four sensors and a kinematic model to track the positions of all four upper limb segments/joints and the other uses one sensor and a dead reckoning algorithm to track a single upper limb segment/joint. Initial evaluation indicates that the system using the kinematic model is able to track orientation to 1 degree and position to within 0.1 cm over a distance of 10 cm. The dead reckoning system combined with the “zero velocity update” correction can reduce errors introduced through double integration of errors in the estimate in offsets of the acceleration from several meters to 0.8% of the total movement distance. Preliminary evaluation of the systems has been carried out on ten healthy volunteers and the kinematic system has also been evaluated on one patient undergoing neurorehabilitation over a period of ten weeks. The initial evaluation of the two systems also shows that they can monitor dynamic information of joint rotation and position and assess rehabilitation process in an objective way, providing additional clinical insight into the rehabilitation process

    Pterodactyl: The Development and Performance of Guidance Algorithms for a Mechanically Deployed Entry Vehicle

    Get PDF
    Pterodactyl is a NASA Space Technology Mission Directorate (STMD) project focused on developing a design capability for optimal, scalable, Guidance and Control (G&C) solutions that enable precision targeting for Deployable Entry Vehicles (DEVs). This feasibility study is unique in that it focuses on the rapid integration of targeting performance analysis with structural & packaging analysis, which is especially challenging for new vehicle and mission designs. This paper will detail the guidance development and trajectory design process for a lunar return mission, selected to stress the vehicle designs and encourage future scalability. For the five G&C configurations considered, the Fully Numerical Predictor-Corrector Entry Guidance (FNPEG) was selected for configurations requiring bank angle guidance and FNPEG with Uncoupled Range Control (URC) was developed for configurations requiring angle of attack and sideslip angle guidance. Successful G&C configurations are defined as those that can deliver payloads to the intended descent and landing initiation point, while abiding by trajectory constraints for nominal and dispersed trajectories

    CFHT Legacy Ultraviolet Extension (CLUE): Witnessing Galaxy Transformations up to 7 Mpc from Rich Cluster Cores

    Full text link
    Using the optical data from the Wide component of the CFHT Legacy Survey, and new ultraviolet data from GALEX, we study the colours and specific star formation rates (SSFR) of ~100 galaxy clusters at 0.16<z<0.36, over areas extending out to radii of r~7Mpc. We use a multicolour, statistical background subtraction method to study the galaxy population at this radius; thus our results pertain to those galaxies which constitute an excess over the average field density. We find that the average SSFR, and its distribution, of the star-forming galaxies (with SFR>0.7 M_sun/yr at z~0.2 and SFR>1.2 M_sun/yr at z~0.3) have no measurable dependence on the cluster-centric radius, and are consistent with the field values. However, the fraction of galaxies with SFR above these thresholds, and the fraction of optically blue galaxies, are lower for the overdense galaxy population in the cluster outskirts compared with the average field value, at all stellar masses M*>10^{9.8} M_sun and at all radii out to at least 7Mpc. Most interestingly, the fraction of blue galaxies that are forming stars at a rate below our UV detection limit is much higher in all radial bins around our cluster sample, compared with the general field value. This is most noticeable for massive galaxies M*>10^{10.7} M_sun; while almost all blue field galaxies of this mass have detectable star formation, this is true for less than 20% of the blue cluster galaxies, even at 7Mpc from the cluster centre. Our results support a scenario where galaxies are pre-processed in locally overdense regions, in a way that reduces their SFR below our UV detection limit, but not to zero.Comment: MNRAS accepte

    CFHT Legacy Ultraviolet Extension (CLUE): witnessing galaxy transformations up to 7 Mpc from rich cluster cores

    Get PDF
    Using the optical data from the Wide component of the Canada-France-Hawaii Telescope (CFHT) Legacy Survey, and new ultraviolet (UV) data from GALEX, we study the colours and specific star formation rates (SSFRs) of ∼ 100 galaxy clusters at 0.16 < z < 0.36, over areas extending out to radii of r∼ 7 Mpc. We use a multicolour, statistical background subtraction method to study the galaxy population at this radius; thus our results pertain to those galaxies which constitute an excess over the average field density. We find that the average SSFR and its distribution of the star-forming galaxies (with at z∼ 0.2 and at z∼ 0.3) have no measurable dependence on the clustercentric radius and are consistent with the field values. However, the fraction of galaxies with SFR above these thresholds, and the fraction of optically blue galaxies, are lower for the overdense galaxy population in the cluster outskirts compared with the average field value, at all stellar masses and at all radii out to at least 7 Mpc. Most interestingly, the fraction of blue galaxies that are forming stars at a rate below our UV detection limit is much higher in all radial bins around our cluster sample compared with the general field value. This is most noticeable for massive galaxies ; while almost all blue field galaxies of this mass have detectable star formation, this is true for less than 20 per cent of the blue cluster galaxies, even at 7 Mpc from the cluster centre. Our results support a scenario where galaxies are pre-processed in locally overdense regions in a way that reduces their SFR below our UV detection limit, but not to zer
    corecore