283 research outputs found

    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC

    Get PDF
    This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Effects of S1 Cleavage on the Structure, Surface Export, and Signaling Activity of Human Notch1 and Notch2

    Get PDF
    Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR) of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD) that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia.The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity.S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with models for receptor activation in which ligand-binding or T-ALL-associated mutations lead to conformational changes of the NRR that permit metalloprotease cleavage

    DIS3 isoforms vary in their endoribonuclease activity and are differentially expressed within haematological cancers

    Get PDF
    DIS3 is the catalytic subunit of the exosome, a protein complex involved in the 3’ to 5’ degradation of RNAs. DIS3 is a highly conserved exoribonuclease, also known as Rrp44. Global sequencing studies have identified DIS3 as being mutated in a range of cancers, with a considerable incidence in multiple myeloma. In this work, we have identified two proteincoding isoforms of DIS3. Both isoforms are functionally relevant and result from alternative splicing. They differ from each other in the size of their N-terminal PIN domain, which has been shown to have endoribonuclease activity and tether DIS3 to the exosome. Isoform 1 encodes a full-length PIN domain, whereas the PIN domain of isoform 2 is shorter and is missing a segment with conserved amino-acids. We have carried out biochemical activity assays on both isoforms of full-length DIS3 as well as the isolated PIN domains. We find that isoform 2, despite missing part of the PIN domain, has greater endonuclease activity compared to isoform 1. Examination of the available structural information allows us to provide a hypothesis to explain this altered behaviour. Our results also show that multiple myeloma patient cells and all cancer cell lines tested have higher levels of isoform 1 compared to isoform 2 whereas Acute Myeloid Leukemia (AML) and chronic myelomonocytic leukaemia (CMML) patient cells and samples from healthy donors have similar levels of isoforms 1 and 2. Together, our data indicate that significant changes in the ratios of the two isoforms could be symptomatic of haematological cancers

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    How Does Education Improve Cognitive Skills? Instructional Time versus Timing of Instruction

    Full text link
    This paper investigates two mechanisms through which education may affect cognitive skills in adolescence: the role of instructional quantity and the timing of instruction with respect to age. To identify causal effects, I exploit a school reform carried out at the state level in Germany as a quasi-natural experiment: between 2001 and 2007, academic-track high school (Gymnasium) was reduced by one year in most of Germany's federal states, leaving the overall curriculum unchanged. To investigate the impact of this educational change on students' cognitive abilities, I conduct two separate analyses: first, I exploit the variation in the curriculum taught to same-aged students at academic-track high school over time and across states to identify the effect of the increase in instructional time on students' crystallized and fluid intelligence scores. Using rich data on seventeen year-old adolescents from the German Socio-Economic Panel (SOEP) study, the estimates show that fluid intelligence remained unaffected, while crystallized intelligence improved for male students. Second, I compare students' competences in their final year of high school using data from the German National Educational Panel Study (NEPS). Preliminary results suggest that students affected by the reform catch up with their non-affected counterparts in terms of their competences by the time of graduation. However, they do not provide any evidence for the timing of instruction to matter in cognitive skill formation. Overall, secondary education therefore seems to impact students' cognitive skills in adolescence especially through instructional time and not so much through age-distinct timing of instruction

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Measurement of branching fractions of charmless four-body Λ<sup>0</sup><sub>b</sub> and Ξ<sup>0</sup><sub>b</sub> decays

    Get PDF
    A search for charmless four-body decays of Λ b 0 and Ξ b 0 baryons with a proton and three charged mesons (either kaons or pions) in the final state is performed. The data sample used was recorded in 2011 and 2012 with the LHCb experiment and corresponds to an integrated luminosity of 3 fb−1. Six decay modes are observed, among which Λ b 0  → pK−π+π−, Λ b 0  → pK−K+K−, Ξ b 0  → pK−π+π− and Ξ b 0  → pK−π+K− are established for the first time. Their branching fractions (including the ratio of hadronisation fractions in the case of the Ξ b 0 baryon) are determined relative to the Λ b 0  → Λ c + π− decay

    Determination of quantum numbers for several excited charmed mesons observed in B- -> D*(+)pi(-) pi(-) decays

    Get PDF
    A four-body amplitude analysis of the B − → D * + π − π − decay is performed, where fractions and relative phases of the various resonances contributing to the decay are measured. Several quasi-model-independent analyses are performed aimed at searching for the presence of new states and establishing the quantum numbers of previously observed charmed meson resonances. In particular the resonance parameters and quantum numbers are determined for the D 1 ( 2420 ) , D 1 ( 2430 ) , D 0 ( 2550 ) , D ∗ 1 ( 2600 ) , D 2 ( 2740 ) and D ∗ 3 ( 2750 ) states. The mixing between the D 1 ( 2420 ) and D 1 ( 2430 ) resonances is studied and the mixing parameters are measured. The dataset corresponds to an integrated luminosity of 4.7     fb − 1 , collected in proton-proton collisions at center-of-mass energies of 7, 8 and 13 TeV with the LHCb detector
    corecore