2,710 research outputs found
Spin-Charge Separation and Kinetic Energy in the t-J Model
I show that spin-charge separation in 2-D t-J model leads to an increase of
kinetic energy. Using a sum rule, I derive an exact expression for the lowest
possible KE (E_{bound}) for any state without doubly occupied sites. KE of
relevant slave-boson and Schwinger-boson mean-field states -- which exhibit
complete spin-charge separation -- are found to be much larger than E_{bound}.
Examination of n(k) shows that the large increse in KE is due to excessive
depletion of electrons from the bottom of the band (Schwinger boson) and of
holes from the top (slave boson). To see whether the excess KE is simply due to
poor treatment of the constraints, I solve the constraint problem analytically
for the Schwinger boson case in the J = 0 limit. This restores gauge
invariance, incorrectly violated in MF theories. The result is a generalized
Hartree-Fock state of the Hubbard model, but one that includes spin waves. Even
after constraints are imposed correctly, the KE remains much larger than
E_{bound}. These results support the notion, advanced earlier [PRB 61, 8663
(2000)] that spin-charge separation in the MF state costs excessive KE, and
makes the state unstable toward recombination processes which lead to
superconductivity in d = 2 and a Fermi liquid state in higher dimensions.Comment: 13 pages, LateX plus three figures. To appear in Phys Rev B Typos
correcte
Dynamical Casimir effect for magnons in a spinor Bose-Einstein condensate
Magnon excitation in a spinor Bose-Einstein condensate by a driven magnetic
field is shown to have a close analogy with the dynamical Casimir effect. A
time-dependent external magnetic field amplifies quantum fluctuations in the
magnetic ground state of the condensate, leading to magnetization of the
system. The magnetization occurs in a direction perpendicular to the magnetic
field breaking the rotation symmetry. This phenomenon is numerically
demonstrated and the excited quantum field is shown to be squeezed.Comment: 8 pages, 3 figure
Phytochemistry and pharmacology of the genus Drypetes: A review
Aims: Traditional medicinal use of species of the genus Drypetes is widespread in the tropical regions. The aim of this review is to systematically appraise the literature available to date on phytochemistry, ethnopharmacology, toxicology and bioactivity (in vitro and in vivo) of crude extracts and purified compounds. Ethnopharmacological relevance: Plants of the genus Drypetes (Putranjivaceae) are used in the Subsaharan African and Asian traditional medicines to treat a multitude of disorders, like dysentery, gonorrhoea, malaria, rheumatism, sinusitis, tumours, as well as for the treatment of wounds, headache, urethral problems, fever in young children, typhoid and several other ailments. Some Drypetes species are used to protect food against pests, as an aphrodisiac, a stimulant/depressant, a rodenticide and a fish poison, against insect bites, to induce conception and for general healing. This review deals with updated information on the ethnobotany, phytochemistry, and biological activities of ethnomedicinally important Drypetes species, in order to provide an input for the future research opportunities. Methods: An extensive review of the literature available in various recognized databases e.g., Google Scholar, PubMed, Science Direct, SciFinder, Web of Science, www.theplantlist.org and www.gbif.org, as well as the Herbier National du Cameroun (Yaoundé) and Botanic Gardens of Limbe databases on the uses and bioactivity of various species of the Drypetes was undertaken. Results: The literature provided information on ethnopharmacological uses of the Subsaharan African and Asian species of the genus Drypetes, e.g., Drypetes aubrévillii, D. capillipes, D. chevalieri, D. gerrardii, D. gossweileri, D. ivorensis, D. klainei, D. natalensis, D. pellegrini (all endemic to Africa) and D. roxburghii (Asian species), for the treatment of multiple disorders. From a total of 19 species, more than 140 compounds including diterpenes, sesquiterpenes, triterpenes (friedelane, oleanane, lupane and hopane-type), flavonoids, lignans, phenylpropanoids and steroids, as well as some thiocyanates, were isolated. Several crude extracts of these plants, and isolated compounds displayed significant analgesic, anthelmintic, antidiabetic, anti-emetic anti-inflammatory, antioxidant, antiparasitic, central nervous system depressant, cytotoxic, and insecticidal activities both in vitro and in vivo. Some toxicities associated with the stem, bark, seed and leaf extracts of D. roxburghii, and the flavonoid, amentoflavone, isolated from the stem extract of D. littoralis as well as D. gerrardii, were confirmed in the animal models and in the rat skeletal myoblast cells assays. As a consequence, traditional medicine from this genus should in future be applied with care. Conclusions: Plants of this genus have offered bioactive samples, both from crude extracts and pure compounds, partly validating their effectivity in traditional medicine. However, most of the available scientific litteratures lacks information on relevant doses, duration of the treatment, storage conditions and positive controls for examining bioefficacy of extract and its active compounds. Additional toxicological studies on the species used in local pharmacopeia are urgently needed to guarantee safe application due to higth toxicity of some crude extracts. Interestingly, this review also reports 10 pimarane dinorditerpenoids structures with the aromatic ring C, isolated from the species collected in Asia Drypetes littoralis (Taiwan), D. perreticulata (China), and in Africa D. gerrardii (Kenya), D. gossweileri (Cameroon). These compounds might turn out to be good candidates for chemotaxonomic markers of the genus
Quasiparticles as composite objects in the RVB superconductor
We study the nature of the superconducting state, the origin of d-wave
pairing, and elementary excitations of a resonating valence bond (RVB)
superconductor. We show that the phase string formulation of the t-J model
leads to confinement of bare spinon and holon excitations in the
superconducting state, though the vacuum is described by the RVB state. Nodal
quasiparticles are obtained as composite excitations of spinon and holon
excitations. The d-wave pairing symmetry is shown to arise from short range
antiferromagnetic correlations
Cytotoxic properties of the stem bark of Citrus reticulata Blanco (Rutaceae)
The bioassay-guided fractionation of the n-hexane extract of Citrus reticulata Blanco (Rutaceae) stem bark yielded scoparone (1), xanthyletin (2), lupeol (3), β-amyrin (4), stigmasterol (5), β-sitosterol (6) and palmitic acid. The structures of these compounds were determined by comprehensive spectroscopic analyses, i.e., 1D and 2D NMR and EI-MS, and by comparison with the reported data. Extracts, fractions and isolated compounds 1-6 were assessed for cytotoxicity by the MTT assay against three human cancer cell lines, i.e., human lung adenocarcinoma cell line A549, human breast adenocarcinoma cell line MCF7 and human Caucasian prostate adenocarcinoma cell line PC3. Significant activity of the n-hexane and the dichloromethane extracts was observed against the breast cancer cell line MCF7 with IC50s of 45.6 and 54.7 μg/mL, respectively. Moreover, the 70% ethyl acetate in n-hexane chromatographic fraction showed significant activity displaying IC50 values of 53.0, 52.4 and 49.1 μg/mL against the cancer cell lines A549, MCF7 and PC3, respectively. Encouragingly, an IC50 of 510.0 µg/mL against the human normal prostate cell line PNT2 indicated very low toxicity, and hence favourable selectivity indices for the 70% ethyl acetate in n-hexane fraction in the range of 9.6-10.4 towards cell lines A549, MCF7 and PC3. Since compounds isolated from the above fraction only delivered IC50 values in the range of 18.2-96.3, 9.2-34.1 and 7.5-97.2 μg/mL against A549, MCF7 and PC3 cell lines, respectively, synergistic action between compounds is suggested. Bioassay results valorize the anticancer effectivity of the stem bark of this plant in Cameroonian pharmacopeia
Complexes of stationary domain walls in the resonantly forced Ginsburg-Landau equation
The parametrically driven Ginsburg-Landau equation has well-known stationary
solutions -- the so-called Bloch and Neel, or Ising, walls. In this paper, we
construct an explicit stationary solution describing a bound state of two
walls. We also demonstrate that stationary complexes of more than two walls do
not exist.Comment: 10 pages, 2 figures, to appear in Physical Review
Spiral phase and phase separation of the double exchange model in the large-S limit
The phase diagram of the double exchange model is studied in the large-S
limit at zero temperature in two and three dimensions. We find that the spiral
state has lower energy than the canted antiferromagnetic state in the region
between the antiferromagnetic phase and the ferromagnetic phase. At small
doping, the spiral phase is unstable against phase separation due to its
negative compressibility. When the Hund coupling is small, the system separates
into spiral regions and antiferromagnetic regions. When the Hund coupling is
large, the spiral phase disappears completely and the system separates into
ferromagnetic regions and antiferromagnetic regions.Comment: 7 pages, 3 postscript figures. To be published in Phys. Rev.
Interplay between Coulomb Blockade and Resonant Tunneling studied by the Keldysh Green's Function Method
A theory of tunneling through a quantum dot is presented which enables us to
study combined effects of Coulomb blockade and discrete energy spectrum of the
dot. The expression of tunneling current is derived from the Keldysh Green's
function method, and is shown to automatically satisfy the conservation at DC
current of both junctions.Comment: 4 pages, 3 figures(mail if you need), use revtex.sty, error
corrected, changed titl
Temperature dependence of the resistivity in the double-exchange model
The resistivity around the ferromagnetic transition temperature in the double
exchange model is studied by the Schwinger boson approach. The spatial spin
correlation responsible for scattering of conduction electrons are taken into
account by adopting the memory function formalism. Although the correlation
shows a peak lower than the transition temperature, the resistivity in the
ferromagnetic state monotonically increases with increasing temperature due to
a variation of the electronic state of the conduction electron. In the
paramagnetic state, the resistivity is dominated by the short range correlation
of scattering and is almost independent of the temperature. It is attributed to
a cancellation between the nearest-neighbor spin correlation, the fermion
bandwidth, and the fermion kinetic energy. This result implies the importance
of the temperature dependence of the electronic states of the conduction
electron as well as the localized spin states in both ferromagnetic and
paramagnetic phases.Comment: RevTex, 4 pages, 4 PostScript figures, To appear in Phys. Rev.
- …
