3,025 research outputs found
Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130 000 years: a model study
We have developed and employed an Earth system
model to explore the forcings of atmospheric pCO2 change
and the chemical and isotopic evolution of seawater over the
last glacial cycle. Concentrations of dissolved phosphorus
(DP), reactive nitrogen, molecular oxygen, dissolved inorganic
carbon (DIC), total alkalinity (TA), 13C-DIC, and 14CDIC
were calculated for 24 ocean boxes. The bi-directional
water fluxes between these model boxes were derived from a
3-D circulation field of the modern ocean (Opa 8.2, NEMO)
and tuned such that tracer distributions calculated by the box
model were consistent with observational data from the modern
ocean. To model the last 130 kyr, we employed records
of past changes in sea-level, ocean circulation, and dust deposition.
According to the model, about half of the glacial
pCO2 drawdown may be attributed to marine regressions.
The glacial sea-level low-stands implied steepened ocean
margins, a reduced burial of particulate organic carbon, phosphorus,
and neritic carbonate at the margin seafloor, a decline
in benthic denitrification, and enhanced weathering of
emerged shelf sediments. In turn, low-stands led to a distinct
rise in the standing stocks of DIC, TA, and nutrients in the
global ocean, promoted the glacial sequestration of atmospheric
CO2 in the ocean, and added 13C- and 14C-depleted
DIC to the ocean as recorded in benthic foraminifera signals.
The other half of the glacial drop in pCO2 was linked
to inferred shoaling of Atlantic meridional overturning circulation
and more efficient utilization of nutrients in the Southern
Ocean. The diminished ventilation of deep water in the
glacial Atlantic and Southern Ocean led to significant 14C
depletions with respect to the atmosphere. According to our
model, the deglacial rapid and stepwise rise in atmospheric
pCO2 was induced by upwelling both in the Southern Ocean
and subarctic North Pacific and promoted by a drop in nutrient
utilization in the Southern Ocean. The deglacial sea-level
rise led to a gradual decline in nutrient, DIC, and TA stocks,
a slow change due to the large size and extended residence
times of dissolved chemical species in the ocean. Thus, the
rapid deglacial rise in pCO2 can be explained by fast changes
in ocean dynamics and nutrient utilization whereas the gradual
pCO2 rise over the Holocene may be linked to the slow
drop in nutrient and TA stocks that continued to promote an
ongoing CO2 transfer from the ocean into the atmosphere
Increased EEG power and slowed dominant frequency in patients with neurogenic pain
To study the mechanisms of chronic neurogenic pain, we compared the power spectra of the resting EEG of patients (n = 15, 38-75 years, median 64 years, 6 women) and healthy controls (n = 15, 41-71 years, median 60 years, 8 women). On an average, the patient group exhibited higher spectral power over the frequency range of 2-25 Hz, and the dominant peak was shifted towards lower frequencies. Maximal differences appeared in the 7-9 Hz band in all electrodes. Frontal electrodes contributed most to this difference in the 13-15 Hz band. Bicoherence analysis suggests an enhanced coupling between theta (4-9 Hz) and beta (12-25 Hz) frequencies in patients. The subgroup of six patients free from centrally acting medication showed higher spectral power in the 2-18 Hz frequency range. On an individual basis, the combination of peak height and peak frequency discriminated between patient and control groups: discriminant analysis classified 87% of all subjects correctly. After a therapeutic lesion in the thalamus (central lateral thalamotomy, CLT) we carried out follow-up for a subgroup of seven patients. Median pain relief was 70 and 95% after 3 and 12 months, respectively. The average EEG power of all seven patients gradually decreased in the theta band and approached normal values only after 12 months. The excess theta EEG power in patients and its decrease after thalamic surgery suggests that both EEG and neurogenic pain are determined by tightly coupled thalamocortical loops. The small therapeutic CLT lesion is thought to initiate a progressive normalization in the affected thalamocortical system, which is reflected in both decrease of EEG power and pain relief
Increased EEG power and slowed dominant frequency in patients with neurogenic pain
To study the mechanisms of chronic neurogenic pain, we compared the power spectra of the resting EEG of patients (n = 15, 38-75 years, median 64 years, 6 women) and healthy controls (n = 15, 41-71 years, median 60 years, 8 women). On an average, the patient group exhibited higher spectral power over the frequency range of 2-25 Hz, and the dominant peak was shifted towards lower frequencies. Maximal differences appeared in the 7-9 Hz band in all electrodes. Frontal electrodes contributed most to this difference in the 13-15 Hz band. Bicoherence analysis suggests an enhanced coupling between theta (4-9 Hz) and beta (12-25 Hz) frequencies in patients. The subgroup of six patients free from centrally acting medication showed higher spectral power in the 2-18 Hz frequency range. On an individual basis, the combination of peak height and peak frequency discriminated between patient and control groups: discriminant analysis classified 87% of all subjects correctly. After a therapeutic lesion in the thalamus (central lateral thalamotomy, CLT) we carried out follow-up for a subgroup of seven patients. Median pain relief was 70 and 95% after 3 and 12 months, respectively. The average EEG power of all seven patients gradually decreased in the theta band and approached normal values only after 12 months. The excess theta EEG power in patients and its decrease after thalamic surgery suggests that both EEG and neurogenic pain are determined by tightly coupled thalamocortical loops. The small therapeutic CLT lesion is thought to initiate a progressive normalization in the affected thalamocortical system, which is reflected in both decrease of EEG power and pain relie
Ab-initio study of oxygen vacancies in alpha-quartz
Extrinsic levels, formation energies, and relaxation geometries are
calculated ab initio for oxygen vacancies in alpha-quartz SiO2. The vacancy is
found to be thermodynamically stable in the charge states Q=+3, Q=0, Q=--2, and
Q=-3. The charged states are stabilized by large and asymmetric distortions
near the vacancy site. Concurrently, Franck-Condon shifts for absorption and
recombination related to these states are found to be strongly asymmetric. In
undoped quartz, the ground state of the vacancy is the neutral charge state,
while for moderate p-type and n-type doping, the +3 and -3 states are favored,
respectively, over a wide Fermi level window. Optical transitions related to
the vacancy are predicted at around 3 eV and 6.5 eV (absorption) and 2.5 to 3.0
eV (emission), depending on the charge state of the ground state.Comment: 6 figures included, but only Fig.1 actually change
MRI-validation of SEP monitoring for ischemic events during microsurgical clipping of intracranial aneurysms
OBJECTIVE:
During surgical clipping of intracranial aneurysms, reduction in SEP amplitude is thought to indicate cortical ischemia and subsequent neurological deficits. Since the sensitivity of SEP is questioned, we investigated SEP with respect to post-operative ischemia.
METHODS:
In 36 patients with 51 intracranial aneurysms, clinical evaluation and diffusion-weighted MRI (DWI) was performed before and within 24h after surgery. During surgery, time of temporary occlusion was recorded. MRI images were reviewed for signs of ischemia.
RESULTS:
For 43 clip applications (84%), we observed neither pathologic SEP events nor ischemia in MRI. In two cases where reduction lasted >10 min after clip release, SEP events correlated with ischemia in the MRI. Only one of the ischemic patients was symptomatic and developed a transient hemiparesis.
CONCLUSIONS:
While pathologic SEP events correlated with visible ischemia in MRI only in two cases with late SEP recovery, ischemia in MRI may have been transient or may not have reached detection threshold in the other cases, in agreement with the absence of permanent neurological deficits.
SIGNIFICANCE:
In complex aneurysm cases, where prolonged temporary occlusion is expected, SEP should be used to detect ischemia at a reversible stage to improve the safety of aneurysm clipping.
Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved
First-principles molecular-dynamics simulations of a hydrous silica melt: Structural properties and hydrogen diffusion mechanism
We use {\it ab initio} molecular dynamics simulations to study a sample of
liquid silica containing 3.84 wt.% HO.We find that, for temperatures of
3000 K and 3500 K,water is almost exclusively dissolved as hydroxyl groups, the
silica network is partially broken and static and dynamical properties of the
silica network change considerably upon the addition of water.Water molecules
or free O-H groups occur only at the highest temperature but are not stable and
disintegrate rapidly.Structural properties of this system are compared to those
of pure silica and sodium tetrasilicate melts at equivalent temperatures. These
comparisons confirm the picture of a partially broken tetrahedral network in
the hydrous liquid and suggest that the structure of the matrix is as much
changed by the addition of water than it is by the addition of the same amount
(in mole %) of sodium oxide. On larger length scales, correlations are
qualitatively similar but seem to be more pronounced in the hydrous silica
liquid. Finally, we study the diffusion mechanisms of the hydrogen atoms in the
melt. It turns out that HOSi triclusters and SiO dangling bonds play a
decisive role as intermediate states for the hydrogen diffusion.Comment: 25 pages, 18 figures. submitte
Motor-evoked potentials (MEP) during brainstem surgery to preserve corticospinal function
Background: Brainstem surgery bears a risk of damage to the corticospinal tract (CST). Motor-evoked potentials (MEPs) are used intraoperatively to monitor CST function in order to detect CST damage at a reversible stage and thus impede permanent neurological deficits. While the method of MEP is generally accepted, warning criteria in the context of brainstem surgery still have to be agreed on. Method: We analyzed 104 consecutive patients who underwent microsurgical resection of lesions affecting the brainstem. Motor grade was documented prior to surgery, early postoperatively and at discharge. A baseline MEP stimulation intensity threshold was defined and intraoperative testing aimed to keep MEP response amplitude constant. MEPs were considered deteriorated and the surgical team was notified whenever the threshold was elevated by ≥20mA or MEP response fell under 50%. Findings: On the first postoperative day, 18 patients experienced new paresis that resolved by discharge in 11. MEPs deteriorated in 39 patients, and 16 of these showed new postoperative paresis, indicating a 41% risk of new paresis. In the remaining 2/18 patients, intraoperative MEPs were stable, although new paresis appeared postoperatively. In one of these patients, intraoperative hemorrhage caused postoperative swelling, and the new motor deficit persisted until discharge. Of all 104 patients, 7 deteriorated in motor grade at discharge, 92 remained unchanged, and 5 patients have improved. Conclusions: Adjustment of surgical strategy contributed to good motor outcome in 33/39 patients. MEP monitoring may help significantly to prevent motor deficits during demanding neurosurgical procedures on the brainste
- …
