2,631 research outputs found
Hodge structures associated to SU(p,1)
Let A be an abelian variety over C such that the semisimple part of the Hodge
group of A is a product of copies of SU(p,1) for some p>1. We show that any
effective Tate twist of a Hodge structure occurring in the cohomology of A is
isomorphic to a Hodge structure in the cohomology of some abelian variety
A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment
The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr
Thermal conductivity of the thermoelectric layered cobalt oxides measured by the Harman method
In-plane thermal conductivity of the thermoelectric layered cobalt oxides has
been measured using the Harman method, in which thermal conductivity is
obtained from temperature gradient induced by applied current. We have found
that the charge reservoir block (the block other than the CoO block)
dominates the thermal conduction, where a nano-block integration concept is
effective for material design. We have further found that the thermal
conductivity shows a small but finite in-plane anisotropy between and
axes, which can be ascribed to the misfit structure.Comment: 4 pages, 4 figures, J. Appl. Phys. (scheduled on July 1, 2004
Temperature and injection current dependence of electroluminescence intensity in green and blue InGaN single-quantum-well light-emitting diodes
Temperature and injection current dependence of electroluminescence (EL) spectral intensity of the superbright green and blue InGaN single-quantum-well (SQW) light-emitting diodes has been studied over a wide temperature range (T = 15–300 K) and as a function of injection current level (0.1–10 mA). It is found that, when temperature is slightly decreased to 140 K, the EL intensity efficiently increases in both cases, as usually seen due to the improved quantum efficiency. However, with further decrease of temperature down to 15 K, unusual reduction of the EL intensity is commonly observed for both of the two diodes. At low temperatures the integrated EL intensity shows a clear trend of saturation with current, accompanying decreases of the EL differential quantum efficiency. We attribute the EL reduction due to trapping of injected carriers by nonradiative recombination centers. Its dependence on temperature and current shows a striking difference between the green and blue SQW diodes. That is, we find that the blue InGaN SQW diode with a smaller In concentration shows more drastic reduction of the EL intensity at lower temperatures and at higher currents than the green one. This unusual evolution of the EL intensity with temperature and current is due to less efficient carrier capturing by SQW. The carrier capture in the green and blue diodes also shows a keen difference owing to the different In content in the InGaN well. These results are analyzed within a context of rate equation model, assuming a finite number of radiative recombination centers. Importance of the efficient carrier capture processes by localized tail states within SQW at 180–300 K is thus pointed out for explaining the observed enhancement of radiative recombination of injected carriers in the presence of high-density misfit dislocations
Temperature dependence of electroluminescence intensity of green and blue InGaN single-quantum-well light-emitting diodes
Temperature dependence of electroluminescence (EL) spectral intensity of the super-bright green and blue InGaN single-quantum-well (SQW) light-emitting diodes has been studied over a wide temperature range (T=15-300 K) under a weak injection current of 0.1 mA. It is found that when T is slightly decreased to 140 K, the EL intensity efficiently increases, as usually seen due to the improved quantum efficiency. However, with further decrease of T down to 15 K, it drastically decreases due to reduced carrier capture by SQW and trapping by nonradiative recombination centers. This unusual temperature-dependent evolution of the EL intensity shows a striking difference between green and blue SQW diodes owing to the different potential depths of the InGaN well. The importance of efficient carrier capture processes by localized tail states within the SQW is thus pointed out for enhancement of radiative recombination of injected carriers in the presence of the high-density dislocations. (C) 2001 American Institute of Physics
On the geometry of Siegel-Jacobi domains
We study the holomorphic unitary representations of the Jacobi group based on
Siegel-Jacobi domains. Explicit polynomial orthonormal bases of the Fock spaces
based on the Siegel-Jacobi disk are obtained. The scalar holomorphic discrete
series of the Jacobi group for the Siegel-Jacobi disk is constructed and
polynomial orthonormal bases of the representation spaces are given.Comment: 15 pages, Latex, AMS fonts, paper presented at the the International
Conference "Differential Geometry and Dynamical Systems", August 25-28, 2010,
University Politehnica of Bucharest, Romani
Landau (\Gamma,\chi)-automorphic functions on \mathbb{C}^n of magnitude \nu
We investigate the spectral theory of the invariant Landau Hamiltonian
\La^\nu acting on the space of
-automotphic functions on \C^n, for given real number ,
lattice of \C^n and a map such that the
triplet satisfies a Riemann-Dirac quantization type
condition. More precisely, we show that the eigenspace
{\mathcal{E}}^\nu_{\Gamma,\chi}(\lambda)=\set{f\in
{\mathcal{F}}^\nu_{\Gamma,\chi}; \La^\nu f = \nu(2\lambda+n) f};
\lambda\in\C, is non trivial if and only if . In such
case, is a finite dimensional vector space
whose the dimension is given explicitly. We show also that the eigenspace
associated to the lowest Landau level of
\La^\nu is isomorphic to the space, {\mathcal{O}}^\nu_{\Gamma,\chi}(\C^n),
of holomorphic functions on \C^n satisfying g(z+\gamma) = \chi(\gamma)
e^{\frac \nu 2 |\gamma|^2+\nu\scal{z,\gamma}}g(z), \eqno{(*)} that we can
realize also as the null space of the differential operator
acting on
functions on \C^n satisfying .Comment: 20 pages. Minor corrections. Scheduled to appear in issue 8 (2008) of
"Journal of Mathematical Physics
- …
