1,612 research outputs found
ACES: Space shuttle flight software analysis expert system
The Analysis Criteria Evaluation System (ACES) is a knowledge based expert system that automates the final certification of the Space Shuttle onboard flight software. Guidance, navigation and control of the Space Shuttle through all its flight phases are accomplished by a complex onboard flight software system. This software is reconfigured for each flight to allow thousands of mission-specific parameters to be introduced and must therefore be thoroughly certified prior to each flight. This certification is performed in ground simulations by executing the software in the flight computers. Flight trajectories from liftoff to landing, including abort scenarios, are simulated and the results are stored for analysis. The current methodology of performing this analysis is repetitive and requires many man-hours. The ultimate goals of ACES are to capture the knowledge of the current experts and improve the quality and reduce the manpower required to certify the Space Shuttle onboard flight software
Cultural Competency in Capacity Building
Discusses different capacity building approaches to improving cultural competency that are informed by community participation and multicultural organizational development
Recommended from our members
The Chronicles of Autzen
My statement of purpose covers the story I have been writing as well as my journey on how I got to where I am today. The beginning is an introduction to the entirety of my work. From there, it goes into my personal life, and what inspired me to write in the first place. As it is read through, the reader will get hints of harsh times in life, the elements of history, and the inspiration of the literature of video games. With all of these elements combined, it explains the purpose of my writing being closely entwined with dealing with the roughness of situations, and finding a way to bust through despite the disadvantages dealt to someone
Scientific Bounty Among Meteorites Recovered from the Dominion Range, Transantarctic Mountains
The US Antarctic Meteorite Pro-gram has visited the Dominion Range in the Transantarctic Mountains during several different sea-sons, including 1985, 2003, 2008, 2010, 2014 and 2018. Total recovered meteorites from this region is close to 3000. The 1985 (11 samples), 2003 (141 samples), 2008 (521 samples), 2010 (901 samples), 2014 (562 samples) seasons have been fully classified, and 2018 (865 samples) are in the process of being classified and characterized. Given that close to 2200 samples have been classified so far, with more expected in 2020, now is a good time to summarize the state of the collection. Here we describe the significant samples documented from this area, as well as a large meteorite shower that dominates the statistics of the region
Antarctic Meteorite Newsletter, Volume 29, Number 1
This newsletter contains classifications for 597 new meteorites from the 2003 and 2004 ANtarctic Search for METeorites (ANSMET) seasons. They include samples from the Cumulus Hills, Dominion Range, Grosvenor Mountains, LaPaz Icefield, MacAlpine Hills, and the Miller Range. Macroscopic and petrographic descriptions are given for 25 of the new meteorites: 1 acapulcoite/Iodranite, 1 howardite, 1 diogenite, 2 eucrites, 1 enstatite chondrite, four L3 and two H3 chondrites, 2 CM, 3 CK and 1 CV chondrites, three R chondrites, and four impact melt breccias (with affinities for H and L). Likely the most interesting sample announced in this newsletter is LAP04840, with affinity to R chondrites. This meteorite contains approximately 15% horneblende, and has mineral compositional ranges and oxygen isotopic values similar to those of R chondrites. The presence of an apparently hydrous phase in this petrologic grade 6 chondrite is very unusual, and should be of great interest to many meteoriticists
Updates on Pairing Issues with the US Antarctic Meteorite Collection
The US Antarctic meteorite program has re-covered >21,000 meteorites since 1976, with thousands of those recovered from several icefields over multiple seasons, some-times spanning over a decade [1]. Pairing is assigned as best as possible at the time of classification, based on information from the field team, macro-scale hand sample features in the lab, and petrography, but later focused studies can reveal details that suggest re-evaluation of pairing groups. As a result, pairing groups are revealed over time, and must be continuously updated. Here we examine a few groups with known issues and give an update on some of the larger or more significant pairing groups
Antarctic Meteorite Classification and Petrographic Database Enhancements
The Antarctic Meteorite collection, which is comprised of over 18,700 meteorites, is one of the largest collections of meteorites in the world. These meteorites have been collected since the late 1970 s as part of a three-agency agreement between NASA, the National Science Foundation, and the Smithsonian Institution [1]. Samples collected each season are analyzed at NASA s Meteorite Lab and the Smithsonian Institution and results are published twice a year in the Antarctic Meteorite Newsletter, which has been in publication since 1978. Each newsletter lists the samples collected and processed and provides more in-depth details on selected samples of importance to the scientific community. Data about these meteorites is also published on the NASA Curation website [2] and made available through the Meteorite Classification Database allowing scientists to search by a variety of parameters. This paper describes enhancements that have been made to the database and to the data and photo acquisition process to provide the meteorite community with faster access to meteorite data concurrent with the publication of the Antarctic Meteorite Newsletter twice a year
Antarctic Meteorite Classification and Petrographic Database
The Antarctic Meteorite collection, which is comprised of over 18,700 meteorites, is one of the largest collections of meteorites in the world. These meteorites have been collected since the late 1970's as part of a three-agency agreement between NASA, the National Science Foundation, and the Smithsonian Institution [1]. Samples collected each season are analyzed at NASA s Meteorite Lab and the Smithsonian Institution and results are published twice a year in the Antarctic Meteorite Newsletter, which has been in publication since 1978. Each newsletter lists the samples collected and processed and provides more in-depth details on selected samples of importance to the scientific community. Data about these meteorites is also published on the NASA Curation website [2] and made available through the Meteorite Classification Database allowing scientists to search by a variety of parameter
- …
