23,703 research outputs found
A new multi-spectral imaging system for examining paintings
A new multispectral system developed at the National Gallery is presented. The system is capable of measuring the spectral reflectance per pixel of a painting. These spectra are found to be almost as accurate as those recorded with a spectrophotometer; there is no need for any spectral reconstruction apart from a simple cubic interpolation between measured points. The procedure for recording spectra is described and the accuracy of the system is quantified. An example is presented of the use of the system to scan a painting of St. Mary Magdalene by Crivelli. The multispectral data are used in an attempt to identify some of the pigments found in the painting by comparison with a library of spectra obtained from reference pigments using the same system. In addition, it is shown that the multispectral data can be used to render a color image of the original under a chosen illuminant and that interband comparison can help to elucidate features of the painting, such as retouchings and underdrawing, that are not visible in trichromatic images
Shape maps for second order partial differential equations
We analyse the singularity formation of congruences of solutions of systems
of second order PDEs via the construction of \emph{shape maps}. The trace of
such maps represents a congruence volume whose collapse we study through an
appropriate evolution equation, akin to Raychaudhuri's equation. We develop the
necessary geometric framework on a suitable jet space in which the shape maps
appear naturally associated with certain linear connections. Explicit
computations are given, along with a nontrivial example
Homogeneity and projective equivalence of differential equation fields
We propose definitions of homogeneity and projective equivalence for systems
of ordinary differential equations of order greater than two, which allow us to
generalize the concept of a spray (for systems of order two). We show that the
Euler-Lagrange fields of parametric Lagrangians of order greater than one which
are regular (in a natural sense that we define) form a projective equivalence
class of homogeneous systems. We show further that the geodesics, or base
integral curves, of projectively equivalent homogeneous differential equation
fields are the same apart from orientation-preserving reparametrization; that
is, homogeneous differential equation fields determine systems of paths
Results from computational analysis of a mixed compression supersonic inlet
A numerical study was performed to simulate the critical flow through a supersonic inlet. This flow field has many phenomena such as shock waves, strong viscous effects, turbulent boundary layer development, boundary layer separations, and mass flow suction through the walls, (bleed). The computational tools used were two full Navier-Stokes (FNS) codes. The supersonic inlet that was analyzed is the Variable Diameter Centerbody, (VDC), inlet. This inlet is a candidate concept for the next generation supersonic involved effort in generating an efficient grid geometry and specifying boundary conditions, particularly in the bleed region and at the outflow boundary. Results for a critical inlet operation compare favorably to Method of Characteristics predictions and experimental data
A new camera for high-resolution infrared imaging of works of art
A new camera – SIRIS (scanning infrared imaging system) – developed at the National Gallery in London allows high-resolution images to be made in the near infrared region (900–1700 nm). The camera is based on a commercially available 320 × 256 pixel indium gallium arsenide area array sensor. This relatively small sensor is moved across the focal plane of the camera using two orthogonal translation stages to give images of c. 5000 × 5000 pixels. The main advantages of the SIRIS camera over scanning infrared devices or sequential image capture and mosaic assembly are its comparative portability and rapid image acquisition – making a 5000 × 5000 pixel image takes less than 20 minutes. The SIRIS camera can operate at a range of resolutions; from around 2.5 pixels per millimetre over an area of up to 2 × 2 m to 10 pixels per millimetre when examining an area measuring 0.5 × 0.5 m. The development of the mechanical, optical and electronic components of the camera, including the design of a new lens, is described. The software used to control image capture and to assemble the individual frames into a seamless mosaic image is mentioned. The camera was designed primarily to examine underdrawings in paintings; preliminary results from test targets and paintings imaged in situ are presented and the quality of the images compared with those from other cameras currently used for this application
Discrete Formulation for the dynamics of rods deforming in space
We describe the main ingredients needed to create, from the smooth lagrangian
density, a variational principle for discrete motions of a discrete rod, with
corresponding conserved Noether currents. We describe all geometrical objects
in terms of elements on the linear Atiyah bundle, using a reduced forward
difference operator. We show how this introduces a discrete lagrangian density
that models the discrete dynamics of a discrete rod. The presented tools are
general enough to represent a discretization of any variational theory in
principal bundles, and its simplicity allows to perform an iterative
integration algorithm to compute the discrete rod evolution in time, starting
from any predefined configurations of all discrete rod elements at initial
times
- …
