825 research outputs found
Simultaneous Feedback Vertex Set: A Parameterized Perspective
Given a family of graphs , a graph , and a positive integer
, the -Deletion problem asks whether we can delete at most
vertices from to obtain a graph in . -Deletion
generalizes many classical graph problems such as Vertex Cover, Feedback Vertex
Set, and Odd Cycle Transversal. A graph ,
where the edge set of is partitioned into color classes, is called
an -edge-colored graph. A natural extension of the
-Deletion problem to edge-colored graphs is the
-Simultaneous -Deletion problem. In the latter problem, we
are given an -edge-colored graph and the goal is to find a set
of at most vertices such that each graph , where and , is in . In this work, we
study -Simultaneous -Deletion for being the
family of forests. In other words, we focus on the -Simultaneous
Feedback Vertex Set (-SimFVS) problem. Algorithmically, we show that,
like its classical counterpart, -SimFVS parameterized by is
fixed-parameter tractable (FPT) and admits a polynomial kernel, for any fixed
constant . In particular, we give an algorithm running in time and a kernel with vertices. The
running time of our algorithm implies that -SimFVS is FPT even when
. We complement this positive result by showing that for
, where is the number of vertices in the input graph,
-SimFVS becomes W[1]-hard. Our positive results answer one of the open
problems posed by Cai and Ye (MFCS 2014)
Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion
Given a graph and a parameter , the Chordal Vertex Deletion (CVD)
problem asks whether there exists a subset of size at most
that hits all induced cycles of size at least 4. The existence of a
polynomial kernel for CVD was a well-known open problem in the field of
Parameterized Complexity. Recently, Jansen and Pilipczuk resolved this question
affirmatively by designing a polynomial kernel for CVD of size
, and asked whether one can design a kernel of size
. While we do not completely resolve this question, we design a
significantly smaller kernel of size , inspired by the
-size kernel for Feedback Vertex Set. Furthermore, we introduce the
notion of the independence degree of a vertex, which is our main conceptual
contribution
On the Parameterized Complexity of Contraction to Generalization of Trees
For a family of graphs F, the F-Contraction problem takes as an input a graph G and an integer k, and the goal is to decide if there exists S subseteq E(G) of size at most k such that G/S belongs to F. Here, G/S is the graph obtained from G by contracting all the edges in S. Heggernes et al.[Algorithmica (2014)] were the first to study edge contraction problems in the realm of Parameterized Complexity. They studied cal F-Contraction when F is a simple family of graphs such as trees and paths. In this paper, we study the F-Contraction problem, where F generalizes the family of trees. In particular, we define this generalization in a "parameterized way". Let T_ell be the family of graphs such that each graph in T_ell can be made into a tree by deleting at most ell edges. Thus, the problem we study is T_ell-Contraction. We design an FPT algorithm for T_ell-Contraction running in time O((ncol)^{O(k + ell)} * n^{O(1)}). Furthermore, we show that the problem does not admit a polynomial kernel when parameterized by k. Inspired by the negative result for the kernelization, we design a lossy kernel for T_ell-Contraction of size O([k(k + 2ell)] ^{(lceil {frac{alpha}{alpha-1}rceil + 1)}})
Kernels for Deletion to Classes of Acyclic Digraphs
In the Directed Feedback Vertex Set (DFVS) problem, we are given a digraph D on n vertices and a positive integer k and the objective is to check whether there exists a set of vertices S of size at most k such that F = D - S is a directed acyclic digraph. In a recent paper, Mnich and van Leeuwen [STACS 2016] considered the kernelization complexity of DFVS with an additional restriction on F, namely that F must be an out-forest (Out-Forest Vertex Deletion Set), an out-tree (Out-Tree Vertex Deletion Set), or a (directed) pumpkin (Pumpkin Vertex Deletion Set). Their objective was to shed some light on the kernelization complexity of the DFVS problem, a well known open problem in the area of Parameterized Complexity. In this article, we improve the kernel sizes of Out-Forest Vertex Deletion Set from O(k^3) to O(k^2) and of Pumpkin Vertex Deletion Set from O(k^18) to O(k^3). We also prove that the former kernel size is tight under certain complexity theoretic assumptions
Split Contraction: The Untold Story
The edit operation that contracts edges, which is a fundamental operation in the theory of graph minors, has recently gained substantial scientific attention from the viewpoint of Parameterized Complexity. In this paper, we examine an important family of graphs, namely the family of split graphs, which in the context of edge contractions, is proven to be significantly less obedient than one might expect. Formally, given a graph G and an integer k, the Split Contraction problem asks whether there exists a subset X of edges of G such that G/X is a split graph and X has at most k elements. Here, G/X is the graph obtained from G by contracting edges in X. It was previously claimed that the Split Contraction problem is fixed-parameter tractable. However, we show that, despite its deceptive simplicity, it is W[1]-hard. Our main result establishes the following conditional lower bound: under the Exponential Time Hypothesis, the Split Contraction problem cannot be solved in time 2^(o(l^2)) * poly(n) where l is the vertex cover number of the input graph. We also verify that this lower bound is essentially tight. To the best of our knowledge, this is the first tight lower bound of the form 2^(o(l^2)) * poly(n) for problems parameterized by the vertex cover number of the input graph. In particular, our approach to obtain this lower bound borrows the notion of harmonious coloring from Graph Theory, and might be of independent interest
Simultaneous Feedback Edge Set: A Parameterized Perspective
In a recent article Agrawal et al. (STACS 2016) studied a simultaneous variant of the classic Feedback Vertex Set problem, called Simultaneous Feedback Vertex Set (Sim-FVS). In this problem the input is an n-vertex graph G, an integer k and a coloring function col : E(G) -> 2^[alpha]and the objective is to check whether there exists a vertex subset S of cardinality at most k in G such that for all i in [alpha], G_i - S is acyclic. Here, G_i = (V (G), {e in E(G) | i in col(e)}) and [alpha] = {1,...,alpha}. In this paper we consider the edge variant of the problem, namely, Simultaneous Feedback Edge Set (Sim-FES). In this problem, the input is same as the input of Sim-FVS and the objective is to check whether there is an edge subset S of cardinality at most k in G such that for all i in [alpha], G_i - S is acyclic. Unlike the vertex variant of the problem, when alpha = 1, the problem is equivalent to finding a maximal spanning forest and hence it is polynomial time solvable. We show that for alpha = 3 Sim-FES is NP-hard by giving a reduction from Vertex Cover on cubic-graphs. The same reduction shows that the problem does not admit an algorithm of running time O(2^o(k) n^O(1)) unless ETH fails. This hardness result is complimented by an FPT algorithm for Sim-FES running in time O(2^((omega k alpha) + (alpha log k)) n^O(1)), where omega is the exponent in the running time of matrix multiplication. The same algorithm gives a polynomial time algorithm for the case when alpha = 2. We also give a kernel for Sim-FES with (k alpha)^O(alpha) vertices. Finally, we consider the problem Maximum Simultaneous Acyclic Subgraph. Here, the input is a graph G, an integer q and, a coloring function col : E(G) -> 2^[alpha] . The question is whether there is a edge subset F of cardinality at least q in G such that for all i in [alpha], G[F_i] is acyclic. Here, F_i = {e in F | i in col(e)}. We give an FPT algorithm for Maximum Simultaneous Acyclic Subgraph running in time O(2^(omega q alpha) n^O(1) ). All our algorithms are based on parameterized version of the Matroid Parity problem
- …
