3,905 research outputs found
The Complexity of All-switches Strategy Improvement
Strategy improvement is a widely-used and well-studied class of algorithms
for solving graph-based infinite games. These algorithms are parameterized by a
switching rule, and one of the most natural rules is "all switches" which
switches as many edges as possible in each iteration. Continuing a recent line
of work, we study all-switches strategy improvement from the perspective of
computational complexity. We consider two natural decision problems, both of
which have as input a game , a starting strategy , and an edge . The
problems are: 1.) The edge switch problem, namely, is the edge ever
switched by all-switches strategy improvement when it is started from on
game ? 2.) The optimal strategy problem, namely, is the edge used in the
final strategy that is found by strategy improvement when it is started from
on game ? We show -completeness of the edge switch
problem and optimal strategy problem for the following settings: Parity games
with the discrete strategy improvement algorithm of V\"oge and Jurdzi\'nski;
mean-payoff games with the gain-bias algorithm [14,37]; and discounted-payoff
games and simple stochastic games with their standard strategy improvement
algorithms. We also show -completeness of an analogous problem
to edge switch for the bottom-antipodal algorithm for finding the sink of an
Acyclic Unique Sink Orientation on a cube
The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions
We show that the widely used homotopy method for solving fixpoint problems,
as well as the Harsanyi-Selten equilibrium selection process for games, are
PSPACE-complete to implement. Extending our result for the Harsanyi-Selten
process, we show that several other homotopy-based algorithms for finding
equilibria of games are also PSPACE-complete to implement. A further
application of our techniques yields the result that it is PSPACE-complete to
compute any of the equilibria that could be found via the classical
Lemke-Howson algorithm, a complexity-theoretic strengthening of the result in
[Savani and von Stengel]. These results show that our techniques can be widely
applied and suggest that the PSPACE-completeness of implementing homotopy
methods is a general principle.Comment: 23 pages, 1 figure; to appear in FOCS 2011 conferenc
Computing Approximate Nash Equilibria in Polymatrix Games
In an -Nash equilibrium, a player can gain at most by
unilaterally changing his behaviour. For two-player (bimatrix) games with
payoffs in , the best-known achievable in polynomial time is
0.3393. In general, for -player games an -Nash equilibrium can be
computed in polynomial time for an that is an increasing function of
but does not depend on the number of strategies of the players. For
three-player and four-player games the corresponding values of are
0.6022 and 0.7153, respectively. Polymatrix games are a restriction of general
-player games where a player's payoff is the sum of payoffs from a number of
bimatrix games. There exists a very small but constant such that
computing an -Nash equilibrium of a polymatrix game is \PPAD-hard.
Our main result is that a -Nash equilibrium of an -player
polymatrix game can be computed in time polynomial in the input size and
. Inspired by the algorithm of Tsaknakis and Spirakis, our
algorithm uses gradient descent on the maximum regret of the players. We also
show that this algorithm can be applied to efficiently find a
-Nash equilibrium in a two-player Bayesian game
Morphology of coronal mass ejections between the sun and the earth
The theme of my PhD has been to investigate the global shape and size of coronal mass ejections, or CMEs, as they propagate from the Sun towards the Earth. CMEs are large eruptive events originating from previously magnetically confined structures in the solar atmosphere. These phenomena are the single biggest drivers for geomagnetic disturbances at Earth. My research is focused on analysing spacecraft data obtained both by imaging observations and in situ instrumentation. The three pieces of work presented in this thesis are summarised below:
Using the NASA STEREO mission, launched in 2006, I have analysed data from the Heliospheric Imager (HI) instruments. This new instrument is uniquely positioned to observe CMEs as they propagate away from the Sun into the inner heliosphere between 0.1 and 1 AU. Using this data I have been able to estimate the radial expansion of a single CME as it propagates in the inner heliosphere.
Investigating another case study event seen by STEREO-B in November 2007, I have been able to show that the distortion of a CME can be directly attributed to a structured solar wind. By using a 3D MHD simulation of the solar wind in the vicinity of the CME, it has been shown that a bimodal velocity structure within this solar wind was driving the CME from behind and distorting it from a circular to a concave morphology.
Using in situ data, I have also attempted to deduce the shape of CMEs in the inner heliosphere. To do this I analysed the shock wave driven ahead of the propagating CME, applying a technique previously used to predict the distance of the shock upstream of Earth’s magnetosphere - this distance can be predicted when the object’s shape (Earth) is known. I have carried out a statistical survey of many CMEs over a range of distances from the Sun, and compared them to theoretical predictions of their shape based on geometry
Finding Approximate Nash Equilibria of Bimatrix Games via Payoff Queries
We study the deterministic and randomized query complexity of finding approximate equilibria in a k × k bimatrix game. We show that the deterministic query complexity of finding an ϵ-Nash equilibrium when ϵ < ½ is Ω(k2), even in zero-one constant-sum games. In combination with previous results [Fearnley et al. 2013], this provides a complete characterization of the deterministic query complexity of approximate Nash equilibria. We also study randomized querying algorithms. We give a randomized algorithm for finding a (3-√5/2 + ϵ)-Nash equilibrium using O(k.log k/ϵ2) payoff queries, which shows that the ½ barrier for deterministic algorithms can be broken by randomization. For well-supported Nash equilibria (WSNE), we first give a randomized algorithm for finding an ϵ-WSNE of a zero-sum bimatrix game using O(k.log k/ϵ4) payoff queries, and we then use this to obtain a randomized algorithm for finding a (⅔ + ϵ)-WSNE in a general bimatrix game using O(k.log k/ϵ4) payoff queries. Finally, we initiate the study of lower bounds against randomized algorithms in the context of bimatrix games, by showing that randomized algorithms require Ω(k2) payoff queries in order to find an ϵ-Nash equilibrium with ϵ < 1/4k, even in zero-one constant-sum games. In particular, this rules out query-efficient randomized algorithms for finding exact Nash equilibria
- …
