372 research outputs found
Comparative Proteomic Analysis of Hymenolepis diminuta Cysticercoid and Adult Stages
Cestodiases are common parasitic diseases of animals and humans. As cestodes have complex lifecycles, hexacanth larvae, metacestodes (including cysticercoids), and adults produce proteins allowing them to establish invasion and to survive in the hostile environment of the host. Hymenolepis diminuta is the most commonly used model cestode in experimental parasitology. The aims of the present study were to perform a comparative proteomic analysis of two consecutive developmental stages of H. diminuta (cysticercoid and adult) and to distinguish proteins which might be characteristic for each of the stages from those shared by both stages. Somatic proteins of H. diminuta were isolated from 6-week-old cysticercoids and adult tapeworms. Cysticercoids were obtained from experimentally infected beetles, Tenebrio molitor, whereas adult worms were collected from experimentally infected rats. Proteins were separated by GeLC-MS/MS (one dimensional gel electrophoresis coupled with liquid chromatography and tandem mass spectrometry). Additionally protein samples were digested in-liquid and identified by LC-MS/MS. The identified proteins were classified according to molecular function, cellular components and biological processes. Our study showed a number of differences and similarities in the protein profiles of cysticercoids and adults; 233 cysticercoid and 182 adult proteins were identified. From these proteins, 131 were present only in the cysticercoid and 80 only in the adult stage samples. Both developmental stages shared 102 proteins; among which six represented immunomodulators and one is a potential drug target. In-liquid digestion and LC-MS/MS complemented and confirmed some of the GeLC-MS/MS identifications. Possible roles and functions of proteins identified with both proteomic approaches are discussed.Peer reviewe
Food-Like Growth Conditions Support Production of Active Vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the Lower Ligand Base,or Cobalt Supplementation
Propionibacterium freudenreichii is a traditional dairy bacterium and a producer of short chain fatty acids (propionic and acetic acids) as well as vitamin B12. In food applications, it is a promising organism for in situ fortification with B12 vitamin since it is generally recognized as safe (GRAS) and it is able to synthesize biologically active form of the vitamin. In the present study, vitamin B12 and pseudovitamin biosynthesis by P. freudenreichii was monitored by UHPLC as a function of growth in food-like conditions using a medium mimicking cheese environment, without cobalt or 5,6-dimethylbenzimidazole (DMBI) supplementation. Parallel growth experiments were performed in industrial-type medium known to support the biosynthesis of vitamin B12. The production of other key metabolites in the two media were determined by HPLC, while the global protein production was compared by gel-based proteomics to assess the effect of growth conditions on the physiological status of the strain and on the synthesis of different forms of vitamin. The results revealed distinct protein andmetabolite production, which reflected the growth conditions and the potential of P. freudenreichii for synthesizing nutritionally relevant amounts of active vitamin B12 regardless of the metabolic state of the cells.Peer reviewe
Identification of immunogenic proteins of the cysticercoid of Hymenolepis diminuta
Background: A wide range of molecules are used by tapeworm metacestodes to establish successful infection in the hostile environment of the host. Reports indicating the proteins in the cestode-host interactions are limited predominantly to taeniids, with no previous data available for non-taeniid species. A non-taeniid, Hymenolepis diminuta, represents one of the most important model species in cestode biology and exhibits an exceptional developmental plasticity in its life-cycle, which involves two phylogenetically distant hosts, arthropod and vertebrate. Results: We identified H. diminuta cysticercoid proteins that were recognized by sera of H. diminuta-infected rats using two-dimensional gel electrophoresis (2DE), 2D-immunoblotting, and LC-MS/MS mass spectrometry. Proteomic analysis of 42 antigenic spots revealed 70 proteins. The largest number belonged to structural proteins and to the heat-shock protein (HSP) family. These results show a number of the antigenic proteins of the cysticercoid stage, which were present already in the insect host prior to contact with the mammal host. These are the first parasite antigens that the mammal host encounters after the infection, therefore they may represent some of the molecules important in host-parasite interactions at the early stage of infection. Conclusions: These results could help in understanding how H. diminuta and other cestodes adapt to their diverse and complex parasitic life-cycles and show universal molecules used among diverse groups of cestodes to escape the host response to infection.Peer reviewe
BluB/CobT2 fusion enzyme activity reveals mechanisms responsible for production of active form of vitamin B 12 by Propionibacterium freudenreichii
Background Propionibacterium freudenreichii is a food grade bacterium that has gained attention as a producer of appreciable amounts of cobalamin, a cobamide with activity of vitamin B 12 . Production of active form of vitamin is a prerequisite for attempts to naturally fortify foods with B 12 by microbial fermentation. Active vitamin B 12 is distinguished from the pseudovitamin by the presence of 5,6-dimethylbenzimidazole (DMBI) as the lower ligand. Genomic data indicate that P. freudenreichii possesses a fusion gene, bluB/cobT2, coding for a predicted phosphoribosyltransferase/nitroreductase, which is presumably involved in production of vitamin B 12 . Understanding the mechanisms affecting the synthesis of different vitamin forms is useful for rational strain selection and essential for engineering of strains with improved B 12 production properties. Results Here, we investigated the activity of heterologously expressed and purified fusion enzyme BluB/CobT2. Our results show that BluB/CoBT2 is responsible for the biosynthesis of the DMBI base and its activation into α-ribazole phosphate, preparing it for attachment as the lower ligand of cobalamin. The fusion enzyme was found to be efficient in metabolite channeling and the enzymes’ inability to react with adenine, a lower ligand present in the pseudovitamin, revealed a mechanism favoring the production of the active form of the vitamin. P. freudenreichii did not produce cobalamin under strictly anaerobic conditions, confirming the requirement of oxygen for DMBI synthesis. In vivo experiments also revealed a clear preference for incorporating DMBI over adenine into cobamide under both microaerobic and anaerobic conditions. Conclusions The herein described BluB/CobT2 is responsible for the production and activation of DMBI. Fusing those two activities results in high pressure towards production of the true vitamin B 12 by efficiently activating DMBI formed within the same enzymatic complex. This indicates that BluB/CobT2 is the crucial enzyme in the B 12 biosynthetic pathway of P. freudenreichii. The GRAS organism status and the preference for synthesizing active vitamin form make P. freudenreichii a unique candidate for the in situ production of vitamin B 12 within food products. Keywords: Propionibacterium freudenreichii ; Cobalamin; B12; DMBI; α-Ribazole; Phosphoribozyltransferase; Nitroreductase; Fusion enzyme; BluB; CobTPeer reviewe
The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone
Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus. Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise spontaneously in an S. aureus mutant lacking the ClpX chaperone. A wide variety of ltaS mutations were selected, and among these, a substantial portion resulted in premature stop codons and other changes predicted to abolish LtaS synthesis. Consistent with this assumption, the clpX ltaS double mutants did not produce LTA, and genetic analyses confirmed that LTA becomes nonessential in the absence of the ClpX chaperone. In fact, inactivation of ltaS alleviated the severe growth defect conferred by the clpX deletion. Microscopic analyses showed that the absence of ClpX partly alleviates the septum placement defects of an LTA-depleted strain, while other phenotypes typical of LTA-negative S. aureus mutants, including increased cell size and decreased autolytic activity, are retained. In conclusion, our results indicate that LTA has an essential role in septum placement that can be bypassed by inactivating the ClpX chaperone. IMPORTANCE Lipoteichoic acid is an essential component of the Staphylococcus aureus cell envelope and an attractive target for the development of vaccines and antimicrobials directed against antibiotic-resistant Gram-positive bacteria such as methicillin-resistant S. aureus and vancomycin-resistant enterococci. In this study, we showed that the lipoteichoic acid polymer is essential for growth of S. aureus only as long as the ClpX chaperone is present in the cell. Our results indicate that lipoteichoic acid and ClpX play opposite roles in a pathway that controls two key cell division processes in S. aureus, namely, septum formation and autolytic activity. The discovery of a novel functional connection in the genetic network that controls cell division in S. aureus may expand the repertoire of possible strategies to identify compounds or compound combinations that kill antibiotic-resistant S. aureus.Peer reviewe
Attack Detection in Autonomous Vehicles Network Using Extreme Gradient Boosting : Predicting the validity of received data from current and previous data samples
Optimizing LDPC Decoding with Machine Learning Using Learnable Weights: A Hybrid Framework Integrating Neural Networks with Iterative Message-Passing for Enhanced Error-Correction in 5G Systems
This thesis investigates the optimization of Low-Density Parity-Check (LDPC) decoding through machine learning techniques, with a specific focus on 5G communication systems. Traditional LDPC decoding algorithms face a critical trade-off: Belief Propagation (BP) offers excellent error-correction performance but with high computational complexity, while Min-Sum (MS) reduces complexity at the cost of degraded performance. To address this limitation, a hybrid neural network architecture is proposed that incorporates learnable normalization and offset weights into the message-passing framework of LDPC decoders.
This approach integrates multiplicative (normalization) and additive (offset) weights into the Tanner graph structure, allowing the decoder to adapt to specific channel conditions. A novel weighted binary cross-entropy loss function is developed that prioritizes entire block recovery by assigning different importance to information and parity bits during training. Experimental results demonstrate that ML-assisted decoder consistently outperforms conventional Min-Sum decoding, approaching the error-correction capability of Belief Propagation while maintaining comparable computational efficiency to Min-Sum.
Comprehensive evaluations across different weight configurations (scalar and vector-based) reveal that increased parametrization generally improves decoding performance. Analysis of the impact of iteration counts shows that the optimal number of decoding iterations varies between different code configurations with studied Basegraph 1 case requiring 15 iterations for optimal performance while studied Basegraph 2 case benefits significantly from 20 iterations.
The proposed ML-assisted LDPC decoder represents a significant advancement for 5G systems, offering improved error correction at lower signal strengths while balancing latency and computational requirements. This research contributes to the ongoing evolution of wireless technology by demonstrating how machine learning can effectively enhance traditional decoding algorithms, providing a practical pathway toward more efficient and adaptive error correction in modern communication systems
Proteomics as a quality control tool of pharmaceutical probiotic bacterial lysate products
Probiotic bacteria have a wide range of applications in veterinary and human therapeutics. Inactivated probiotics are complex samples and quality control (QC) should measure as many molecular features as possible. Capillary electrophoresis coupled to mass spectrometry (CE/MS) has been used as a multidimensional and high throughput method for the identification and validation of biomarkers of disease in complex biological samples such as biofluids. In this study we evaluate the suitability of CE/MS to measure the consistency of different lots of the probiotic formulation Pro-Symbioflor which is a bacterial lysate of heat-inactivated Escherichia coli and Enterococcus faecalis. Over 5000 peptides were detected by CE/MS in 5 different lots of the bacterial lysate and in a sample of culture medium. 71 to 75% of the total peptide content was identical in all lots. This percentage increased to 87–89% when allowing the absence of a peptide in one of the 5 samples. These results, based on over 2000 peptides, suggest high similarity of the 5 different lots. Sequence analysis identified peptides of both E. coli and E. faecalis and peptides originating from the culture medium, thus confirming the presence of the strains in the formulation. Ontology analysis suggested that the majority of the peptides identified for E. coli originated from the cell membrane or the fimbrium, while peptides identified for E. faecalis were enriched for peptides originating from the cytoplasm. The bacterial lysate peptides as a whole are recognised as highly conserved molecular patterns by the innate immune system as microbe associated molecular pattern (MAMP). Sequence analysis also identified the presence of soybean, yeast and casein protein fragments that are part of the formulation of the culture medium. In conclusion CE/MS seems an appropriate QC tool to analyze complex biological products such as inactivated probiotic formulations and allows determining the similarity between lots
Screening of FDA-Approved Drugs Using a 384-Well Plate-Based Biofilm Platform: The Case of Fingolimod
In an effort to find new repurposed antibacterial compounds, we performed the screening of an FDA-approved compounds library against Staphylococcus aureus American Type Culture Collection (ATCC) 25923. Compounds were evaluated for their capacity to prevent both planktonic growth and biofilm formation as well as to disrupt pre-formed biofilms. One of the identified initial hits was fingolimod (FTY720), an immunomodulator approved for the treatment of multiple sclerosis, which was then selected for follow-up studies. Fingolimod displayed a potent activity against S. aureus and S. epidermidis with a minimum inhibitory concentration (MIC) within the range of 12–15 µM at which concentration killing of all the bacteria was confirmed. A time–kill kinetic study revealed that fingolimod started to drastically reduce the viable bacterial count within two hours and we showed that no resistance developed against this compound for up to 20 days. Fingolimod also displayed a high activity against Acinetobacter baumannii (MIC 25 µM) as well as a modest activity against Escherichia coli and Pseudomonas aeruginosa. In addition, fingolimod inhibited quorum sensing in Chromobacterium violaceum and might therefore target this signaling pathway in certain Gram-negative bacteria. In conclusion, we present the identification of fingolimod from a compound library and its evaluation as a potential repurposed antibacterial compound
Screening of FDA-Approved Drugs Using a 384-Well Plate-Based Biofilm Platform: The Case of Fingolimod
In an effort to find new repurposed antibacterial compounds, we performed the screening of an FDA-approved compounds library against Staphylococcus aureus American Type Culture Collection (ATCC) 25923. Compounds were evaluated for their capacity to prevent both planktonic growth and biofilm formation as well as to disrupt pre-formed biofilms. One of the identified initial hits was fingolimod (FTY720), an immunomodulator approved for the treatment of multiple sclerosis, which was then selected for follow-up studies. Fingolimod displayed a potent activity against S. aureus and S. epidermidis with a minimum inhibitory concentration (MIC) within the range of 12–15 µM at which concentration killing of all the bacteria was confirmed. A time–kill kinetic study revealed that fingolimod started to drastically reduce the viable bacterial count within two hours and we showed that no resistance developed against this compound for up to 20 days. Fingolimod also displayed a high activity against Acinetobacter baumannii (MIC 25 µM) as well as a modest activity against Escherichia coli and Pseudomonas aeruginosa. In addition, fingolimod inhibited quorum sensing in Chromobacterium violaceum and might therefore target this signaling pathway in certain Gram-negative bacteria. In conclusion, we present the identification of fingolimod from a compound library and its evaluation as a potential repurposed antibacterial compound
- …
