721 research outputs found
On the design of dynamic associative neural memories
Cataloged from PDF version of article.We consider the design problem for a class of
discrete-time and continuous-time neural networks. We obtain
a characterization of all connection weights that store a given set
of vectors into the network; that is, each given vector becomes an
equilibrium point of the network. We also give sufficient conditions
that guarantee the asymptotic stability of these equilibrium
points
High count rate {\gamma}-ray spectroscopy with LaBr3:Ce scintillation detectors
The applicability of LaBr3:Ce detectors for high count rate {\gamma}-ray
spectroscopy is investigated. A 3"x3" LaBr3:Ce detector is used in a test setup
with radioactive sources to study the dependence of energy resolution and photo
peak efficiency on the overall count rate in the detector. Digitized traces
were recorded using a 500 MHz FADC and analysed with digital signal processing
methods. In addition to standard techniques a pile-up correction method is
applied to the data in order to further improve the high-rate capabilities and
to reduce the losses in efficiency due to signal pile-up. It is shown, that
{\gamma}-ray spectroscopy can be performed with high resolution at count rates
even above 1 MHz and that the performance can be enhanced in the region between
500 kHz and 10 MHz by using pile-up correction techniques
Fragmentation and systematics of the Pygmy Dipole Resonance in the stable N=82 isotones
The low-lying electric dipole (E1) strength in the semi-magic nucleus 136Xe
has been measured which finalizes the systematic survey to investigate the
so-called pygmy dipole resonance (PDR) in all stable even N=82 isotones with
the method of nuclear resonance fluorescence using real photons in the entrance
channel. In all cases, a fragmented resonance-like structure of E1 strength is
observed in the energy region 5 MeV to 8 MeV. An analysis of the fragmentation
of the strength reveals that the degree of fragmentation decreases towards the
proton-deficient isotones while the total integrated strength increases
indicating a dependence of the total strength on the neutron-to-proton ratio.
The experimental results are compared to microscopic calculations within the
quasi-particle phonon model (QPM). The calculation includes complex
configurations of up to three phonons and is able to reproduce also the
fragmentation of the E1 strength which allows to draw conclusions on the
damping of the PDR. Calculations and experimental data are in good agreement in
the degree of fragmentation and also in the integrated strength if the
sensitivity limit of the experiments is taken into account
The decay of quadrupole-octupole states in Ca and Ce
Background: Two-phonon excitations originating from the coupling of two
collective one-phonon states are of great interest in nuclear structure
physics. One possibility to generate low-lying excitations is the coupling
of quadrupole and octupole phonons.
Purpose: In this work, the -decay behavior of candidates for the
state in the doubly-magic nucleus Ca and in
the heavier and semi-magic nucleus Ce is investigated.
Methods: experiments have been carried out at the
High Intensity -ray Source (HIS) facility in combination with
the high-efficiency -ray spectroscopy setup consisting of
HPGe and LaBr detectors. The setup enables the acquisition of
- coincidence data and, hence, the detection of direct decay
paths.
Results: In addition to the known ground-state decays, for Ca the
decay into the state was observed, while for Ce the direct
decays into the and the state were detected. The experimentally
deduced transition strengths and excitation energies are compared to
theoretical calculations in the framework of EDF theory plus QPM approach and
systematically analyzed for isotones. In addition, negative parities for
two states in Ca were deduced simultaneously.
Conclusions: The experimental findings together with the theoretical
calculations support the two-phonon character of the excitation in the
light-to-medium-mass nucleus Ca as well as in the stable even-even
nuclei.Comment: 11 pages, 6 figures, as accepted in Phys. Rev.
Multilinear Wavelets: A Statistical Shape Space for Human Faces
We present a statistical model for D human faces in varying expression,
which decomposes the surface of the face using a wavelet transform, and learns
many localized, decorrelated multilinear models on the resulting coefficients.
Using this model we are able to reconstruct faces from noisy and occluded D
face scans, and facial motion sequences. Accurate reconstruction of face shape
is important for applications such as tele-presence and gaming. The localized
and multi-scale nature of our model allows for recovery of fine-scale detail
while retaining robustness to severe noise and occlusion, and is
computationally efficient and scalable. We validate these properties
experimentally on challenging data in the form of static scans and motion
sequences. We show that in comparison to a global multilinear model, our model
better preserves fine detail and is computationally faster, while in comparison
to a localized PCA model, our model better handles variation in expression, is
faster, and allows us to fix identity parameters for a given subject.Comment: 10 pages, 7 figures; accepted to ECCV 201
Parity assignments in 172,174Yb using polarized photons and the K quantum number in rare earth nuclei
The 100 % polarized photon beam at the High Intensity gamma-ray Source (HIgS)
at Duke University has been used to determine the parity of six dipole
excitations between 2.9 and 3.6 MeV in the deformed nuclei 172,174 Yb in photon
scattering (g,g') experiments. The measured parities are compared with previous
assignments based on the K quantum number that had been assigned in Nuclear
Resonance Fluorescence (NRF) experiments by using the Alaga rules. A systematic
survey of the relation between gamma-decay branching ratios and parity quantum
numbers is given for the rare earth nuclei.Comment: 5 pages, 6 figures, to be published in Phys. Rev.
Isospin Character of the Pygmy Dipole Resonance in 124Sn
The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn
with the (a,a'g) coincidence method at E=136 MeV. The comparison with results
of photon-scattering experiments reveals a splitting into two components with
different structure: one group of states which is excited in (a,a'g) as well as
in (g,g') reactions and a group of states at higher energies which is only
excited in (g,g') reactions. Calculations with the self-consistent relativistic
quasiparticle time-blocking approximation and the quasiparticle phonon model
are in qualitative agreement with the experimental results and predict a
low-lying isoscalar component dominated by neutron-skin oscillations and a
higher-lying more isovector component on the tail of the giant dipole
resonance
Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,γ) in the ESR Storage Ring
© 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio
Investigation of octupole vibrational states in 150Nd via inelastic proton scattering (p,p'g)
Octupole vibrational states were studied in the nucleus
via inelastic proton scattering with \unit[10.9]{MeV} protons which are an
excellent probe to excite natural parity states. For the first time in
, both the scattered protons and the rays were
detected in coincidence giving the possibility to measure branching ratios in
detail. Using the coincidence technique, the ratios of the decaying
transitions for 10 octupole vibrational states and other negative-parity states
to the yrast band were determined and compared to the Alaga rule. The positive
and negative-parity states revealed by this experiment are compared with
Interacting Boson Approximation (IBA) calculations performed in the (spdf)
boson space. The calculations are found to be in good agreement with the
experimental data, both for positive and negative-parity states
Isoscalar dipole coherence at low energies and forbidden E1 strength
In 16O and 40Ca an isoscalar, low-energy dipole transition (IS-LED)
exhausting approximately 4% of the isoscalar dipole (ISD) energy-weighted sum
rule is experimentally known, but conspicuously absent from recent theoretical
investigations of ISD strength. The IS-LED mode coincides with the so-called
isospin-forbidden E1 transition. We report that for N=Z nuclei up to 100Sn the
fully self-consistent Random-Phase-Approximation with finite-range forces,
phenomenological and realistic, yields a collective IS-LED mode, typically
overestimating its excitation energy, but correctly describing its IS strength
and electroexcitation form factor. The presence of E1 strength is solely due to
the Coulomb interaction between the protons and the resulting isospin-symmetry
breaking. The smallness of its value is related to the form of the transition
density, due to translational invariance. The calculated values of E1 and ISD
strength carried by the IS-LED depend on the effective interaction used.
Attention is drawn to the possibility that in N-not-equal-Z nuclei this
distinct mode of IS surface vibration can develop as such or mix strongly with
skin modes and thus influence the pygmy dipole strength as well as the ISD
strength function. In general, theoretical models currently in use may be unfit
to predict its precise position and strength, if at all its existence.Comment: 9 pages, 6 figures, EPJA submitte
- …
