33 research outputs found
Detection of node group membership in networks with group overlap
Most networks found in social and biochemical systems have modular
structures. An important question prompted by the modularity of these networks
is whether nodes can be said to belong to a single group. If they cannot, we
would need to consider the role of "overlapping communities." Despite some
efforts in this direction, the problem of detecting overlapping groups remains
unsolved because there is neither a formal definition of overlapping community,
nor an ensemble of networks with which to test the performance of group
detection algorithms when nodes can belong to more than one group. Here, we
introduce an ensemble of networks with overlapping groups. We then apply three
group identification methods--modularity maximization, k-clique percolation,
and modularity-landscape surveying--to these networks. We find that the
modularity-landscape surveying method is the only one able to detect
heterogeneities in node memberships, and that those heterogeneities are only
detectable when the overlap is small. Surprisingly, we find that the k-clique
percolation method is unable to detect node membership for the overlapping
case.Comment: 12 pages, 6 figures. To appear in Euro. Phys. J
Characterizing the community structure of complex networks
Community structure is one of the key properties of complex networks and
plays a crucial role in their topology and function. While an impressive amount
of work has been done on the issue of community detection, very little
attention has been so far devoted to the investigation of communities in real
networks. We present a systematic empirical analysis of the statistical
properties of communities in large information, communication, technological,
biological, and social networks. We find that the mesoscopic organization of
networks of the same category is remarkably similar. This is reflected in
several characteristics of community structure, which can be used as
``fingerprints'' of specific network categories. While community size
distributions are always broad, certain categories of networks consist mainly
of tree-like communities, while others have denser modules. Average path
lengths within communities initially grow logarithmically with community size,
but the growth saturates or slows down for communities larger than a
characteristic size. This behaviour is related to the presence of hubs within
communities, whose roles differ across categories. Also the community
embeddedness of nodes, measured in terms of the fraction of links within their
communities, has a characteristic distribution for each category. Our findings
are verified by the use of two fundamentally different community detection
methods.Comment: 15 pages, 20 figures, 4 table
Line Graphs of Weighted Networks for Overlapping Communities
In this paper, we develop the idea to partition the edges of a weighted graph
in order to uncover overlapping communities of its nodes. Our approach is based
on the construction of different types of weighted line graphs, i.e. graphs
whose nodes are the links of the original graph, that encapsulate differently
the relations between the edges. Weighted line graphs are argued to provide an
alternative, valuable representation of the system's topology, and are shown to
have important applications in community detection, as the usual node partition
of a line graph naturally leads to an edge partition of the original graph.
This identification allows us to use traditional partitioning methods in order
to address the long-standing problem of the detection of overlapping
communities. We apply it to the analysis of different social and geographical
networks.Comment: 8 Pages. New title and text revisions to emphasise differences from
earlier paper
Overlapping Community Detection in Networks: the State of the Art and Comparative Study
This paper reviews the state of the art in overlapping community detection
algorithms, quality measures, and benchmarks. A thorough comparison of
different algorithms (a total of fourteen) is provided. In addition to
community level evaluation, we propose a framework for evaluating algorithms'
ability to detect overlapping nodes, which helps to assess over-detection and
under-detection. After considering community level detection performance
measured by Normalized Mutual Information, the Omega index, and node level
detection performance measured by F-score, we reached the following
conclusions. For low overlapping density networks, SLPA, OSLOM, Game and COPRA
offer better performance than the other tested algorithms. For networks with
high overlapping density and high overlapping diversity, both SLPA and Game
provide relatively stable performance. However, test results also suggest that
the detection in such networks is still not yet fully resolved. A common
feature observed by various algorithms in real-world networks is the relatively
small fraction of overlapping nodes (typically less than 30%), each of which
belongs to only 2 or 3 communities.Comment: This paper (final version) is accepted in 2012. ACM Computing
Surveys, vol. 45, no. 4, 2013 (In press) Contact: [email protected]
Community detection in graphs
The modern science of networks has brought significant advances to our
understanding of complex systems. One of the most relevant features of graphs
representing real systems is community structure, or clustering, i. e. the
organization of vertices in clusters, with many edges joining vertices of the
same cluster and comparatively few edges joining vertices of different
clusters. Such clusters, or communities, can be considered as fairly
independent compartments of a graph, playing a similar role like, e. g., the
tissues or the organs in the human body. Detecting communities is of great
importance in sociology, biology and computer science, disciplines where
systems are often represented as graphs. This problem is very hard and not yet
satisfactorily solved, despite the huge effort of a large interdisciplinary
community of scientists working on it over the past few years. We will attempt
a thorough exposition of the topic, from the definition of the main elements of
the problem, to the presentation of most methods developed, with a special
focus on techniques designed by statistical physicists, from the discussion of
crucial issues like the significance of clustering and how methods should be
tested and compared against each other, to the description of applications to
real networks.Comment: Review article. 103 pages, 42 figures, 2 tables. Two sections
expanded + minor modifications. Three figures + one table + references added.
Final version published in Physics Report
Comparative gustatory responses in four species of gerbilline rodents
Integrated taste responses to chemical stimulation of the tongue were recorded from the intact chorda tympani nerve in four species of gerbils ( Meriones libycus, M. shawi, M. unguiculatus and Psammomys obesus ).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47116/1/359_2004_Article_BF00618177.pd
Comparison of methods for the detection of node group membership in bipartite networks
Comparison of methods for the detection of node group membership in bipartite networks
Most real-world networks considered in the literature have
a modular structure. Analysis of these real-world networks often are
performed under the assumption that there is only one type of
node. However, social and biochemical systems are often bipartite
networks, meaning that there are two exclusive sets of nodes, and
that edges run exclusively between nodes belonging to different
sets. Here we address the issue of module detection in bipartite
networks by comparing the performance of two classes of group
identification methods – modularity maximization and clique
percolation – on an ensemble of modular random bipartite
networks. We find that the modularity maximization methods are able
to reliably detect the modular bipartite structure, and that, under
some conditions, the simulated annealing method outperforms the
spectral decomposition method. We also find that the clique
percolation methods are not capable of reliably detecting the
modular bipartite structure of the bipartite model networks
considered
