33 research outputs found

    Detection of node group membership in networks with group overlap

    Full text link
    Most networks found in social and biochemical systems have modular structures. An important question prompted by the modularity of these networks is whether nodes can be said to belong to a single group. If they cannot, we would need to consider the role of "overlapping communities." Despite some efforts in this direction, the problem of detecting overlapping groups remains unsolved because there is neither a formal definition of overlapping community, nor an ensemble of networks with which to test the performance of group detection algorithms when nodes can belong to more than one group. Here, we introduce an ensemble of networks with overlapping groups. We then apply three group identification methods--modularity maximization, k-clique percolation, and modularity-landscape surveying--to these networks. We find that the modularity-landscape surveying method is the only one able to detect heterogeneities in node memberships, and that those heterogeneities are only detectable when the overlap is small. Surprisingly, we find that the k-clique percolation method is unable to detect node membership for the overlapping case.Comment: 12 pages, 6 figures. To appear in Euro. Phys. J

    Characterizing the community structure of complex networks

    Get PDF
    Community structure is one of the key properties of complex networks and plays a crucial role in their topology and function. While an impressive amount of work has been done on the issue of community detection, very little attention has been so far devoted to the investigation of communities in real networks. We present a systematic empirical analysis of the statistical properties of communities in large information, communication, technological, biological, and social networks. We find that the mesoscopic organization of networks of the same category is remarkably similar. This is reflected in several characteristics of community structure, which can be used as ``fingerprints'' of specific network categories. While community size distributions are always broad, certain categories of networks consist mainly of tree-like communities, while others have denser modules. Average path lengths within communities initially grow logarithmically with community size, but the growth saturates or slows down for communities larger than a characteristic size. This behaviour is related to the presence of hubs within communities, whose roles differ across categories. Also the community embeddedness of nodes, measured in terms of the fraction of links within their communities, has a characteristic distribution for each category. Our findings are verified by the use of two fundamentally different community detection methods.Comment: 15 pages, 20 figures, 4 table

    Line Graphs of Weighted Networks for Overlapping Communities

    Get PDF
    In this paper, we develop the idea to partition the edges of a weighted graph in order to uncover overlapping communities of its nodes. Our approach is based on the construction of different types of weighted line graphs, i.e. graphs whose nodes are the links of the original graph, that encapsulate differently the relations between the edges. Weighted line graphs are argued to provide an alternative, valuable representation of the system's topology, and are shown to have important applications in community detection, as the usual node partition of a line graph naturally leads to an edge partition of the original graph. This identification allows us to use traditional partitioning methods in order to address the long-standing problem of the detection of overlapping communities. We apply it to the analysis of different social and geographical networks.Comment: 8 Pages. New title and text revisions to emphasise differences from earlier paper

    Overlapping Community Detection in Networks: the State of the Art and Comparative Study

    Full text link
    This paper reviews the state of the art in overlapping community detection algorithms, quality measures, and benchmarks. A thorough comparison of different algorithms (a total of fourteen) is provided. In addition to community level evaluation, we propose a framework for evaluating algorithms' ability to detect overlapping nodes, which helps to assess over-detection and under-detection. After considering community level detection performance measured by Normalized Mutual Information, the Omega index, and node level detection performance measured by F-score, we reached the following conclusions. For low overlapping density networks, SLPA, OSLOM, Game and COPRA offer better performance than the other tested algorithms. For networks with high overlapping density and high overlapping diversity, both SLPA and Game provide relatively stable performance. However, test results also suggest that the detection in such networks is still not yet fully resolved. A common feature observed by various algorithms in real-world networks is the relatively small fraction of overlapping nodes (typically less than 30%), each of which belongs to only 2 or 3 communities.Comment: This paper (final version) is accepted in 2012. ACM Computing Surveys, vol. 45, no. 4, 2013 (In press) Contact: [email protected]

    Community detection in graphs

    Full text link
    The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.Comment: Review article. 103 pages, 42 figures, 2 tables. Two sections expanded + minor modifications. Three figures + one table + references added. Final version published in Physics Report

    Comparative gustatory responses in four species of gerbilline rodents

    Full text link
    Integrated taste responses to chemical stimulation of the tongue were recorded from the intact chorda tympani nerve in four species of gerbils ( Meriones libycus, M. shawi, M. unguiculatus and Psammomys obesus ).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47116/1/359_2004_Article_BF00618177.pd

    Comparison of methods for the detection of node group membership in bipartite networks

    No full text
    Most real-world networks considered in the literature have a modular structure. Analysis of these real-world networks often are performed under the assumption that there is only one type of node. However, social and biochemical systems are often bipartite networks, meaning that there are two exclusive sets of nodes, and that edges run exclusively between nodes belonging to different sets. Here we address the issue of module detection in bipartite networks by comparing the performance of two classes of group identification methods – modularity maximization and clique percolation – on an ensemble of modular random bipartite networks. We find that the modularity maximization methods are able to reliably detect the modular bipartite structure, and that, under some conditions, the simulated annealing method outperforms the spectral decomposition method. We also find that the clique percolation methods are not capable of reliably detecting the modular bipartite structure of the bipartite model networks considered

    Burns During Pregnancy

    Full text link
    corecore