980 research outputs found
Single cell fertilizer (SCF): Evidence to prove that bio-molecules are potent nutrient for plant growth
Fertilizers of various kinds are used for the cultivation of crop plants for hyper production of plant based food materials. The study used bio-molecules made in a bacterial cell. The experimental results showed tremendous effect on plant growth. These cellular molecules were made by treating the bacterial cells with lysozyme and protenase K. The wet/weight was increased in multiple folds compared to that of control sets. The fold of increase was 4.79 for rice, 2.77 for wheat, 1.89 for gram and 1.89 for pea when bacterial cellular molecules were used as fertilizer
Extracting Entities of Interest from Comparative Product Reviews
This paper presents a deep learning based approach to extract product
comparison information out of user reviews on various e-commerce websites. Any
comparative product review has three major entities of information: the names
of the products being compared, the user opinion (predicate) and the feature or
aspect under comparison. All these informing entities are dependent on each
other and bound by the rules of the language, in the review. We observe that
their inter-dependencies can be captured well using LSTMs. We evaluate our
system on existing manually labeled datasets and observe out-performance over
the existing Semantic Role Labeling (SRL) framework popular for this task.Comment: Source Code:
https://github.com/jatinarora2702/Review-Information-Extractio
Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain
<p>Abstract</p> <p>Background</p> <p>Spatially mapped large scale gene expression databases enable quantitative comparison of data measurements across genes, anatomy, and phenotype. In most ongoing efforts to study gene expression in the mammalian brain, significant resources are applied to the mapping and visualization of data. This paper describes the implementation and utility of Brain Explorer, a 3D visualization tool for studying <it>in situ </it>hybridization-based (ISH) expression patterns in the Allen Brain Atlas, a genome-wide survey of 21,000 expression patterns in the C57BL6J adult mouse brain.</p> <p>Results</p> <p>Brain Explorer enables users to visualize gene expression data from the C57Bl/6J mouse brain in 3D at a resolution of 100 μm<sup>3</sup>, allowing co-display of several experiments as well as 179 reference neuro-anatomical structures. Brain Explorer also allows viewing of the original ISH images referenced from any point in a 3D data set. Anatomic and spatial homology searches can be performed from the application to find data sets with expression in specific structures and with similar expression patterns. This latter feature allows for anatomy independent queries and genome wide expression correlation studies.</p> <p>Conclusion</p> <p>These tools offer convenient access to detailed expression information in the adult mouse brain and the ability to perform data mining and visualization of gene expression and neuroanatomy in an integrated manner.</p
TRScore: A Novel GPT-based Readability Scorer for ASR Segmentation and Punctuation model evaluation and selection
Punctuation and Segmentation are key to readability in Automatic Speech
Recognition (ASR), often evaluated using F1 scores that require high-quality
human transcripts and do not reflect readability well. Human evaluation is
expensive, time-consuming, and suffers from large inter-observer variability,
especially in conversational speech devoid of strict grammatical structures.
Large pre-trained models capture a notion of grammatical structure. We present
TRScore, a novel readability measure using the GPT model to evaluate different
segmentation and punctuation systems. We validate our approach with human
experts. Additionally, our approach enables quantitative assessment of text
post-processing techniques such as capitalization, inverse text normalization
(ITN), and disfluency on overall readability, which traditional word error rate
(WER) and slot error rate (SER) metrics fail to capture. TRScore is strongly
correlated to traditional F1 and human readability scores, with Pearson's
correlation coefficients of 0.67 and 0.98, respectively. It also eliminates the
need for human transcriptions for model selection
Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs
In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the
densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The
RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing
the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic
ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes
preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no
notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process
Smart Speech Segmentation using Acousto-Linguistic Features with look-ahead
Segmentation for continuous Automatic Speech Recognition (ASR) has
traditionally used silence timeouts or voice activity detectors (VADs), which
are both limited to acoustic features. This segmentation is often overly
aggressive, given that people naturally pause to think as they speak.
Consequently, segmentation happens mid-sentence, hindering both punctuation and
downstream tasks like machine translation for which high-quality segmentation
is critical. Model-based segmentation methods that leverage acoustic features
are powerful, but without an understanding of the language itself, these
approaches are limited. We present a hybrid approach that leverages both
acoustic and language information to improve segmentation. Furthermore, we show
that including one word as a look-ahead boosts segmentation quality. On
average, our models improve segmentation-F0.5 score by 9.8% over baseline. We
show that this approach works for multiple languages. For the downstream task
of machine translation, it improves the translation BLEU score by an average of
1.05 points
An anatomic gene expression atlas of the adult mouse brain
Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea)
Observation of γγ → ττ in proton-proton collisions and limits on the anomalous electromagnetic moments of the τ lepton
The production of a pair of τ leptons via photon–photon fusion, γγ → ττ, is observed for the f irst time in proton–proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb−1. Events with a pair of τ leptons produced via photon–photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section of γγ → ττ is σfid obs = 12.4+3.8 −3.1 fb. Constraints are set on the contributions to the anomalous magnetic moment (aτ) and electric dipole moments (dτ) of the τ lepton originating from potential effects of new physics on the γττ vertex: aτ = 0.0009+0.0032 −0.0031 and |dτ| < 2.9×10−17ecm (95% confidence level), consistent with the standard model
Canary in the Coal Mine: Using Early Data to Aid Policy Makers Manage the Spread of Covid-19 Pandemic
Non-negative matrix factorization framework for dimensionality reduction and unsupervised clustering
Non-negative Matrix Factorization (NMF) is a robust approach to learning spatially localized parts-based subspace patterns in applications such as document analysis, image interpretation, and gene expression analysis. NMF-based decomposition capabilities are lacking in the present ITK toolkit. We provide a generic framework for such decompositions. A specific implementation using a Kulback-Liebler type divergence function is provided to illustrate a possible extension of the base class along with test images to illustrate usage. We have found this method to be robust to noisy image data and show examples from our on-going research using the Allan Brain Atlas data to illustrate its ability to analyze higher dimension data.</jats:p
- …
