1,213 research outputs found
Study of natural formation and anthropogenic change in soils for sustainable land-use
In this work, we have presented an approach to rational territorial organization of the environment with the aim of harmonizing natural, economic and socio-demographic processes. Successive stages of the action for the development of basin nature management projects are proposed by us. Design technology rational land use is implemented for one of the small river basi
Selfoscillations of Suspended Carbon Nanotubes with a Deflection Sensitive Resistance under Voltage Bias
We theoretically investigate the electro-mechanics of a Suspended Carbon
Nanotube with a Deflection Sensitive Resistance subjected to a homogeneous
Magnetic Field and a constant Voltage Bias. We show that, (with the exception
of a singular case), for a sufficiently high magnetic field the
time-independent state of charge transport through the nanotube becomes
unstable to selfexcitations of the mechanical vibration accompanied by
oscialltions in the voltage drop and current across the nanotube.Comment: 4 pages, 1 figur
Globalization of the world economic- innovative processes and its effect on the cluster policy of the russian federation in the field of formation of spatial organization of the territory = Глобализация мировых экономико-инновационных процессов и его влияние на кластерную политику РФ формирования пространственной организации территории
The article considers the strategies of state economic development implemented through
cluster policy, which are one of the most effective methods of smoothing regional disparities in the formationof developmen
Electromechanical instability in suspended carbon nanotubes
We have theoretically investigated electromechanical properties of freely
suspended carbon nanotubes when a current is injected into the tubes using a
scanning tunneling microscope. We show that a shuttle-like electromechanical
instability can occur if the bias voltage exceeds a dissipation-dependent
threshold value. An instability results in large amplitude vibrations of the
carbon nanotube bending mode, which modify the current-voltage characteristics
of the system
Strong coupling between single-electron tunneling and nano-mechanical motion
Nanoscale resonators that oscillate at high frequencies are useful in many
measurement applications. We studied a high-quality mechanical resonator made
from a suspended carbon nanotube driven into motion by applying a periodic
radio frequency potential using a nearby antenna. Single-electron charge
fluctuations created periodic modulations of the mechanical resonance
frequency. A quality factor exceeding 10^5 allows the detection of a shift in
resonance frequency caused by the addition of a single-electron charge on the
nanotube. Additional evidence for the strong coupling of mechanical motion and
electron tunneling is provided by an energy transfer to the electrons causing
mechanical damping and unusual nonlinear behavior. We also discovered that a
direct current through the nanotube spontaneously drives the mechanical
resonator, exerting a force that is coherent with the high-frequency resonant
mechanical motion.Comment: Main text 12 pages, 4 Figures, Supplement 13 pages, 6 Figure
Switchable Coupling of Vibrations to Two-Electron Carbon-Nanotube Quantum Dot States
We report transport measurements on a quantum dot in a partly suspended
carbon nanotube. Electrostatic tuning allows us to modify and even switch 'on'
and 'off' the coupling to the quantized stretching vibration across several
charge states. The magnetic-field dependence indicates that only the
two-electron spin-triplet excited state couples to the mechanical motion,
indicating mechanical coupling to both the valley degree of freedom and the
exchange interaction, in contrast to standard models
Capacitive Spring Softening in Single-Walled Carbon Nanotube Nanoelectromechanical Resonators
We report the capacitive spring softening effect observed in single-walled
carbon nanotube (SWNT) nanoelectromechanical (NEM) resonators. The nanotube
resonators adopt dual-gate configuration with both bottom-gate and side-gate
capable of tuning the resonance frequency through capacitive coupling.
Interestingly, downward resonance frequency shifting is observed with
increasing side-gate voltage, which can be attributed to the capacitive
softening of spring constant. Furthermore, in-plane vibrational modes exhibit
much stronger spring softening effect than out-of-plan modes. Our dual-gate
design should enable the differentiation between these two types of vibrational
modes, and open up new possibility for nonlinear operation of nanotube
resonators.Comment: 12 pages/ 3 figure
- …
