7,838 research outputs found

    An experimental and computational analysis of buoyancy driven flows by laser sheet tomography, particle image velocimetry and computational fluid dynamics

    Get PDF
    This paper contains details of a three pronged investigation into the development of a buoyant jet impinging on a wall in a closed vessel. The development of the flow was measured experimentally by particle image velocimetry (PIV) and laser sheet tomography. The experimental results are compared with a computational model of the flow calculated by the computational fluid dynamics (CFD) package PHOENICS

    A CFD technique for estimating the flow distortion effects on LiDAR measurements when made in complex flow fields

    Get PDF
    The effect of flow distortion on the measurements produced by a LiDAR or SoDAR in close proximity to either complex terrain or a structure creating localised flow distortion is difficult to determine by analytical means. Also, as LiDARs and SoDARs are not point measurement devices, the techniques they employ for velocity measurements leads to complexities in the estimation of the effect of flow distortion on the accuracy of the measurements they make. This paper presents a method by which the effect of flow distortion on measurements made by a LiDAR in a distorted flow field may be determined using computational fluid dynamics. The results show that the error created by the flow distortion will cause the vector measured by a LiDAR to differ significantly from an equivalent point measurement. However, the results of the simulation show that, if the LiDAR is being used to measure the undisturbed flow field above a structure which creates highly localised flow distortion, the LiDAR results are less affected by the distortion of the local flow field than data acquired by a point measurement technique such as a cup anemometer

    Influence of positional correlations on the propagation of waves in a complex medium with polydisperse resonant scatterers

    Get PDF
    We present experimental results on a model system for studying wave propagation in a complex medium exhibiting low frequency resonances. These experiments enable us to investigate a fundamental question that is relevant for many materials, such as metamaterials, where low-frequency scattering resonances strongly influence the effective medium properties. This question concerns the effect of correlations in the positions of the scatterers on the coupling between their resonances, and hence on wave transport through the medium. To examine this question experimentally, we measure the effective medium wave number of acoustic waves in a sample made of bubbles embedded in an elastic matrix over a frequency range that includes the resonance frequency of the bubbles. The effective medium is highly dispersive, showing peaks in the attenuation and the phase velocity as functions of the frequency, which cannot be accurately described using the Independent Scattering Approximation (ISA). This discrepancy may be explained by the effects of the positional correlations of the scatterers, which we show to be dependent on the size of the scatterers. We propose a self-consistent approach for taking this "polydisperse correlation" into account and show that our model better describes the experimental results than the ISA

    The Challenges of Capacity Building in the Aligning Forces for Quality Alliances

    Get PDF
    Summarizes the challenges and trade-offs in infrastructure and governance as well as stakeholder relations and participation, such as inclusive versus efficient decision making, in an alliance to coordinate regional healthcare improvement activities

    Antiferromagnetism at T > 500 K in the Layered Hexagonal Ruthenate SrRu2O6

    Get PDF
    We report an experimental and computational study of magnetic and electronic properties of the layered Ru(V) oxide SrRu2O6 (hexagonal, P-3 1m), which shows antiferromagnetic order with a N\'eel temperature of 563(2) K, among the highest for 4d oxides. Magnetic order occurs both within edge-shared octahedral sheets and between layers and is accompanied by anisotropic thermal expansivity that implies strong magnetoelastic coupling of Ru(V) centers. Electrical transport measurements using focused ion beam induced deposited contacts on a micron-scale crystallite as a function of temperature show p-type semiconductivity. The calculated electronic structure using hybrid density functional theory successfully accounts for the experimentally observed magnetic and electronic structure and Monte Carlo simulations reveals how strong intralayer as well as weaker interlayer interactions are a defining feature of the high temperature magnetic order in the material.Comment: Physical Review B 2015 accepted for publicatio

    Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2){1-x}(CuCrO2){x}

    Get PDF
    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl(1-x)Cr(x)O2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Vegard law and increase with x as expected. The effective moment is equal to the Cr^3+ spin-only S = 3/2 value throughout the entire solid solution. Theta is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, J_BB was estimated by mean-field theory to be 2.0 meV. Despite the sizable Theta, long-range antiferromagnetic order does not develop until very large x, and is preceeded by glassy behavior. Data presented here, and that on dilute Al-substitution from Okuda et al., suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Neel temperature, consistent with its magnetic frustration. Uncompensated short-range interactions are present in the Al-substituted samples and are likely a result of chemical disorder
    corecore