125 research outputs found

    Micronutrient content in enteral nutrition formulas: comparison with the dietary reference values for healthy populations

    Get PDF
    The micronutrient content in standard enteral mixtures should be closer to the dietary reference values for a healthy population since standard enteral diets are formulated for subjects with no special nutritional needs. This study compares the micronutrient content of the most common enteral nutrition (EN) formulas with European dietary reference values (DRVs) for healthy population

    Prediction of Renal Acid Load in Adult Patients on Parenteral Nutrition

    Get PDF
    Metabolic acidosis and metabolic bone disease are frequent complications in patients on parenteral nutrition (PN). A common contributor to these complications could be a daily high renal acid load. This study aims to find a method for predicting the potential total acid load (PTAL) and the pH of the compounded parenteral nutrition mixtures. The pH and titratable acidity (TA) of fifty compounded mixtures were measured. The potential metabolic acid load (PMAL) was calculated by considering the amount of nutrients that are acid producers and consumers. The PTAL of the TPN mixtures was calculated by adding TA to PMAL. Multiple linear regression analyses were used to develop a predictive model for the TA and pH of the compounded mixtures. The predicted TA and pH values of the analyzed mixtures agreed with those measured (Passing-Bablok analysis). The PTAL was >50 mmol/day for 82% of the mixtures, >75 mmol/day for 40% of the mixtures, and >100 mmol/day for 22% of the mixtures. The prediction of the renal acid load in patients on long-term PN could allow more appropriate acid-base balancing. Moreover, predicting the pH of such mixtures could be useful to pharmacists to assess the stability and compatibility of the components in the compounded mixtures

    Essential amino acid profile in parenteral nutrition mixtures: Does it meet needs?

    Get PDF
    Background and Aims: The study compares the essential amino acid (EAA) composition of different parenteral nutrition (PN) mixtures with whey protein EAA profile and the theoretical daily EAA requirements (set by WHO/FAO/UNU or IAAO method). According to the individual EAA profile, the potential effect of several PN mixtures was evaluated on the skeletal muscle mass (SMM) of patients on home PN. Methods: Eight AA solutions and fifteen complete PN mixtures were considered. Twenty-nine clinically stable patients with short bowel syndrome on home total PN were retrospectively evaluated. SMM was estimated by bioelectrical impedance analysis. Results: The prescribed doses of EAA that showed a significant increase in home PN patients muscle mass were considerably greater than the theoretical ones, showing an EAA profile similar to whey protein. At the daily dose of 1 g of total AA s/kg body weight (BW), the considered PN mixtures mostly failed to improve SMM. Only prescribed doses which included more than 0.25 g/kg BW of total BCAA with at least 0.10 g/kg BW leucine, 0.08 g/kg BW isoleucine, and 0.06 g/kg BW methionine showed a significant increase in SMM. Conclusions: The theoretical daily requirement for each EAA was met by all considered PN solutions when the prescribed daily dose of total AAs was set at 1 g/kg BW. Nevertheless, our data suggest that only an increase in total BCAA, also richer in single AA leucine, isoleucine, and methionine, is associated with the maintenance and/or increase of SMM. According to these preliminary observations, we support the prescription of an EAA composition of PN mixtures close to that of whey protein for the preservation of SMM in patients on long-term total PN

    A novel railway power systems design methodology using genetic algorithms: models and application

    Get PDF
    The development and the upgrade of railway networks is one of the strategies to reach decarbonization targets in the transportation field, thanks to the considerably lower energy consumption of electric trains with respect to other vehicles, typically fossil fuel powered. The design process of electric railway power systems is complex, requiring advanced simulation tools. The paper proposes a novel methodology for the design of the electrical power system of railway tracks, using genetic optimization. For this purpose, the authors developed ROAR, a flexible simulation and optimization software that generates optimized railway power system designs, helping engineers find the most efficient design solutions from a technical and economic feasibility perspective. After validating the simulation engine and comparing it with well-established software, the proposed method was applied to an operational electrified railway line in Italy to assess the effectiveness of the optimization algorithm. The results demonstrate excellent convergence properties, finding a different infrastructure design that achieves the same electrical performance, reducing costs with respect to the existing design

    Estimation of glomerular filtration rate from skeletal muscle mass. A new equation independent from age, weight, gender, and ethnicity

    Get PDF
    The most used indicator for the renal function is the glomerular filtration rate (GFR). Current used predictive GFR equations were calibrated on patients with chronic kidney disease. Thus, they are not very precise in healthy individuals. The estimation of skeletal muscle mass (SMM) allows the prediction of the daily urinary creatinine excretion (24hUCrE). This study proposes an equation for the estimation of GFR based on SMM (eGFRMuscle) and serum creatinine (SCr)

    Immunogenicity and reactogenicity of modified vaccinia Ankara pre-exposure vaccination against mpox according to previous smallpox vaccine exposure and HIV infection. Prospective cohort study

    Get PDF
    Background: Pre-exposure vaccination with MVA-BN has been widely used against mpox to contain the 2022 outbreak. Many countries have defined prioritized strategies, administering a single dose to those historically vaccinated for smallpox, to achieve quickly adequate coverage in front of low supplies. Using epidemiological models, real-life effectiveness was estimated at approximately 36%-86%, but no clinical trials were performed. Few data on MVA-BN immunogenicity are currently available, and there are no established correlates of protection. Immunological response in PLWH in the context of the 2022 outbreak was also poorly described. Methods: Blood samples were collected from participants eligible for pre-exposure MVA-BN vaccination before (T1) receiving a full course of vaccine (single-dose for vaccine-experienced or smallpox-primed and two-dose for smallpox vaccine-naïve or smallpox non-primed) and one month after the last dose (T2 and T3, respectively). MPXV-specific IgGs were measured by in-house immunofluorescence assay, using 1:20 as screening dilution, MPXV-specific nAbs by 50% plaque reduction neutralization test (PRNT50, starting dilution 1:10), and IFN-γ-producing specific T cells to MVA-BN vaccine, by ELISpot assay. Paired or unpaired t-test and Wilcoxon or Mann-Whitney test were used to analyse IgG and nAbs, and T-cell response, as appropriate. The probability of IgG and nAb response in vaccine-experienced vs. vaccine-naïve was estimated in participants not reactive at T1. The McNemar test was used to evaluate vaccination's effect on humoral response both overall and by smallpox vaccination history. In participants who were not reactive at T1, the proportion of becoming responders one month after full-cycle completion by exposure groups was compared by logistic regression and then analysed by HIV status strata (interaction test). The response was also examined in continuous, and the Average Treatment Effect (ATE) of the difference from baseline to schedule completion according to previous smallpox vaccination was estimated after weighting for HIV using a linear regression model. Self-reports of adverse effects following immunization (AEFIs) were prospectively collected after the first MVA-BN dose (T1). Systemic (S-AEFIs: fatigue, myalgia, headache, GI effects, chills) and local (L-AEFIs: redness, swelling, pain) AEFIs were graded as absent (grade 0), mild (1), moderate (2), or severe (3). The maximum level of severity for S-AEFIs and L-AEFIs ever experienced over the 30 days post-dose by vaccination exposure groups were analysed using a univariable multinomial logistic regression model and after adjusting for HIV status; for each of the symptoms, we also compared the mean duration by exposure group using an unpaired t-test. Findings: Among the 164 participants included, 90 (54.8%) were smallpox vaccine-experienced. Median age was 49 years (IQR 41-55). Among the 76 (46%) PLWH, 76% had a CD4 count >500 cells/μL. There was evidence that both the IgG and nAbs titers increased after administration of the MVA-BN vaccine. However, there was no evidence for a difference in the potential mean change in humoral response from baseline to the completion of a full cycle when comparing primed vs. non-primed participants. Similarly, there was no evidence for a difference in the seroconversion rate after full cycle vaccination in the subset of participants not reactive for nAbs at T1 (p = 1.00 by Fisher's exact test). In this same analysis and for the nAbs outcome, there was some evidence of negative effect modification by HIV (interaction p-value = 0.17) as primed people living with HIV (PLWH) showed a lower probability of seroconversion vs. non-primed, and the opposite was seen in PLWoH. When evaluating the response in continuous, we observed an increase in T-cell response after MVA-BN vaccination in both primed and non-primed. There was evidence for a larger increase when using the 2-dose vs. one-dose strategy with a mean difference of -2.01 log2 (p ≤ 0.0001), after controlling for HIV. No evidence for a difference in the risk of developing any AEFIs of any grade were observed by exposure group, except for the lower risk of grade 2 (moderate) fatigue, induration and local pain which was lower in primed vs. non-primed [OR 0.26 (0.08-0.92), p = 0.037; OR 0.30 (0.10-0.88), p = 0.029 and OR 0.19 (0.05-0.73), p = 0.015, respectively]. No evidence for a difference in symptom duration was also detected between the groups. Interpretation: The evaluation of the humoral and cellular response one month after the completion of the vaccination cycle suggested that MVA-BN is immunogenic and that the administration of a two-dose schedule is preferable regardless of the previous smallpox vaccination history, especially in PLWH, to maximize nAbs response. MVA-BN was safe as well tolerated, with grade 2 reactogenicity higher after the first administration in vaccine-naïve than in vaccine-experienced individuals, but with no evidence for a difference in the duration of these adverse effects. Further studies are needed to evaluate the long-term duration of immunity and to establish specific correlates of protection. Funding: The study was supported by the National Institute for Infectious Disease Lazzaro Spallanzani IRCCS "Advanced grant 5 × 1000, 2021" and by the Italian Ministry of Health "Ricerca Corrente Linea 2"

    Immunogenicity and reactogenicity of modified vaccinia Ankara pre-exposure vaccination against mpox according to previous smallpox vaccine exposure and HIV infection: prospective cohort study

    Get PDF
    BACKGROUND: Pre-exposure vaccination with MVA-BN has been widely used against mpox to contain the 2022 outbreak. Many countries have defined prioritized strategies, administering a single dose to those historically vaccinated for smallpox, to achieve quickly adequate coverage in front of low supplies. Using epidemiological models, real-life effectiveness was estimated at approximately 36%–86%, but no clinical trials were performed. Few data on MVA-BN immunogenicity are currently available, and there are no established correlates of protection. Immunological response in PLWH in the context of the 2022 outbreak was also poorly described. METHODS: Blood samples were collected from participants eligible for pre-exposure MVA-BN vaccination before (T1) receiving a full course of vaccine (single-dose for vaccine-experienced or smallpox-primed and two-dose for smallpox vaccine-naïve or smallpox non-primed) and one month after the last dose (T2 and T3, respectively). MPXV-specific IgGs were measured by in-house immunofluorescence assay, using 1:20 as screening dilution, MPXV-specific nAbs by 50% plaque reduction neutralization test (PRNT50, starting dilution 1:10), and IFN-γ-producing specific T cells to MVA-BN vaccine, by ELISpot assay. Paired or unpaired t-test and Wilcoxon or Mann–Whitney test were used to analyse IgG and nAbs, and T-cell response, as appropriate. The probability of IgG and nAb response in vaccine-experienced vs. vaccine-naïve was estimated in participants not reactive at T1. The McNemar test was used to evaluate vaccination's effect on humoral response both overall and by smallpox vaccination history. In participants who were not reactive at T1, the proportion of becoming responders one month after full-cycle completion by exposure groups was compared by logistic regression and then analysed by HIV status strata (interaction test). The response was also examined in continuous, and the Average Treatment Effect (ATE) of the difference from baseline to schedule completion according to previous smallpox vaccination was estimated after weighting for HIV using a linear regression model. Self-reports of adverse effects following immunization (AEFIs) were prospectively collected after the first MVA-BN dose (T1). Systemic (S-AEFIs: fatigue, myalgia, headache, GI effects, chills) and local (L-AEFIs: redness, swelling, pain) AEFIs were graded as absent (grade 0), mild (1), moderate (2), or severe (3). The maximum level of severity for S-AEFIs and L-AEFIs ever experienced over the 30 days post-dose by vaccination exposure groups were analysed using a univariable multinomial logistic regression model and after adjusting for HIV status; for each of the symptoms, we also compared the mean duration by exposure group using an unpaired t-test. FINDING: Among the 164 participants included, 90 (54.8%) were smallpox vaccine-experienced. Median age was 49 years (IQR 41–55). Among the 76 (46%) PLWH, 76% had a CD4 count >500 cells/μL. There was evidence that both the IgG and nAbs titers increased after administration of the MVA-BN vaccine. However, there was no evidence for a difference in the potential mean change in humoral response from baseline to the completion of a full cycle when comparing primed vs. non-primed participants. Similarly, there was no evidence for a difference in the seroconversion rate after full cycle vaccination in the subset of participants not reactive for nAbs at T1 (p = 1.00 by Fisher's exact test). In this same analysis and for the nAbs outcome, there was some evidence of negative effect modification by HIV (interaction p-value = 0.17) as primed people living with HIV (PLWH) showed a lower probability of seroconversion vs. non-primed, and the opposite was seen in PLWoH. When evaluating the response in continuous, we observed an increase in T-cell response after MVA-BN vaccination in both primed and non-primed. There was evidence for a larger increase when using the 2-dose vs. one-dose strategy with a mean difference of −2.01 log2 (p ≤ 0.0001), after controlling for HIV. No evidence for a difference in the risk of developing any AEFIs of any grade were observed by exposure group, except for the lower risk of grade 2 (moderate) fatigue, induration and local pain which was lower in primed vs. non-primed [OR 0.26 (0.08–0.92), p = 0.037; OR 0.30 (0.10–0.88), p = 0.029 and OR 0.19 (0.05–0.73), p = 0.015, respectively]. No evidence for a difference in symptom duration was also detected between the groups. INTERPRETATION: The evaluation of the humoral and cellular response one month after the completion of the vaccination cycle suggested that MVA-BN is immunogenic and that the administration of a two-dose schedule is preferable regardless of the previous smallpox vaccination history, especially in PLWH, to maximize nAbs response. MVA-BN was safe as well tolerated, with grade 2 reactogenicity higher after the first administration in vaccine-naïve than in vaccine-experienced individuals, but with no evidence for a difference in the duration of these adverse effects. Further studies are needed to evaluate the long-term duration of immunity and to establish specific correlates of protection
    corecore