4,692 research outputs found
Preparation and manipulation of a fault-tolerant superconducting qubit
We describe a qubit encoded in continuous quantum variables of an rf
superconducting quantum interference device. Since the number of accessible
states in the system is infinite, we may protect its two-dimensional subspace
from small errors introduced by the interaction with the environment and during
manipulations. We show how to prepare the fault-tolerant state and manipulate
the system. The discussed operations suffice to perform quantum computation on
the encoded state, syndrome extraction, and quantum error correction. We also
comment on the physical sources of errors and possible imperfections while
manipulating the system.Comment: Typo corrected, title changed as suggested by the editors of Phys.
Rev. B, references adde
Statistics of voltage fluctuations in resistively shunted Josephson junctions
The intrinsic nonlinearity of Josephson junctions converts Gaussian current
noise in the input into non-Gaussian voltage noise in the output. For a
resistively shunted Josephson junction with white input noise we determine
numerically exactly the properties of the few lowest cumulants of the voltage
fluctuations, and we derive analytical expressions for these cumulants in
several important limits. The statistics of the voltage fluctuations is found
to be Gaussian at bias currents well above the Josephson critical current, but
Poissonian at currents below the critical value. In the transition region close
to the critical current the higher-order cumulants oscillate and the voltage
noise is strongly non-Gaussian. For coloured input noise we determine the third
cumulant of the voltage.Comment: 9 pages, 5 figure
The role of law and ethics in developing business management as a profession
Currently, business management is far from being recognised as a profession. This paper suggests that a professional spirit should be developed which could function as a filter of commercial reasoning. Broadly, management will not be organised within the framework of a well-established profession unless formal knowledge, licensing, professional autonomy and professional codes of conduct are developed sufficiently. In developing business management as a profession, law may play a key role. Where the idea is that business management should be more professsionalised, managers must show that they are willing to adopt ethical values, while arriving at business decisions. The paper argues that ethics cannot survive without legal regulation, which, in turn, will not be supported by law unless lawyers can find alternative solutions to the large mechanisms of the official society, secured by the monopolised coercion of the nation state. From a micro perspective of law and business ethics, communities can be developed with their own conventions, rules and standards that are generated and sanctioned within the boundaries of the communities themselves
Cotunneling at resonance for the single-electron transistor
We study electron transport through a small metallic island in the
perturbative regime. Using a recently developed diagrammatic technique, we
calculate the occupation of the island as well as the conductance through the
transistor in forth order in the tunneling matrix elements, a process referred
to as cotunneling. Our formulation does not require the introduction of a
cut-off. At resonance we find significant modifications of previous theories
and good agreement with recent experiments.Comment: 5 pages, Revtex, 5 eps-figure
Density Dependent Parametrization Models: Formalism and Applications
In this work we derive a formalism to incorporate asymmetry and temperature
effects in the Brown-Rho (BR) scaled lagrangian model in a mean field theory.
The lagrangian density discussed in this work requires less parameters than the
usual models with density dependent couplings. We also present the formalism
with the inclusion of the eight lightest baryons, two lightest leptons, beta
equilibrium and charge neutrality in order to apply the BR scaled model to the
study of neutron stars. The results are again compared with the ones obtained
from another density dependent parametrization model. The role played by the
rearrangement term at T=0 for nuclear or neutron star matter and at finite
temperature is investigated. The BR scaled model is shown to be a good tool in
studies involving density dependent effective masses and in astrophysics
applications.Comment: 23 pages, 10 figure
Metastable Voltage States of Coupled Josephson Junctions
We investigate a chain of capacitively coupled Josephson junctions in the
regime where the charging energy dominates over the Josephson coupling,
exploiting the analogy between this system and a multi-dimensional crystal. We
find that the current-voltage characteristic of the current-driven chain has a
staircase shape, beginning with an (insulating) non-zero voltage plateau at
small currents. This behavior differs qualitatively from that of a single
junction, which should show Bloch oscillations with vanishing dc voltage. The
simplest system where this effect can be observed consists of three grains
connected by two junctions. The theory explains the results of recent
experiments on Josephson junction arrays.Comment: 5 pages, 4 figures include
Sequential generation of entangled multi-qubit states
We consider the deterministic generation of entangled multi-qubit states by
the sequential coupling of an ancillary system to initially uncorrelated
qubits. We characterize all achievable states in terms of classes of matrix
product states and give a recipe for the generation on demand of any
multi-qubit state. The proposed methods are suitable for any sequential
generation-scheme, though we focus on streams of single photon time-bin qubits
emitted by an atom coupled to an optical cavity. We show, in particular, how to
generate familiar quantum information states such as W, GHZ, and cluster
states, within such a framework.Comment: 4 pages and 2 figures, submitted for publicatio
Strong Charge Fluctuations in the Single-Electron Box: A Quantum Monte Carlo Analysis
We study strong electron tunneling in the single-electron box, a small
metallic island coupled to an electrode by a tunnel junction, by means of
quantum Monte Carlo simulations. We obtain results, at arbitrary tunneling
strength, for the free energy of this system and the average charge on the
island as a function of an external bias voltage. In much of the parameter
range an extrapolation to the ground state is possible. Our results for the
effective charging energy for strong tunneling are compared to earlier -- in
part controversial -- theoretical predictions and Monte Carlo simulations
- …
