685 research outputs found
Reconstruction with velocities
Reconstruction is becoming a crucial procedure of galaxy clustering analysis for future spectroscopic redshift surveys to obtain subper cent level measurement of the baryon acoustic oscillation scale. Most reconstruction algorithms rely on an estimation of the displacement field from the observed galaxy distribution. However, the displacement reconstruction degrades near the survey boundary due to incomplete data and the boundary effects extend to ∼100 Mpc/h within the interior of the survey volume. We study the possibility of using radial velocities measured from the cosmic microwave background observation through the kinematic Sunyaev-Zeldovich effect to improve performance near the boundary. We find that the boundary effect can be reduced to ∼30 − 40 Mpc/h with the velocity information from Simons Observatory. This is especially helpful for dense low redshift surveys where the volume is relatively small and a large fraction of total volume is affected by the boundary
Reduced cortical renal GLUT1 expression induced by angiotensin-converting enzyme inhibition in diabetic spontaneously hypertensive rats
Diabetes in spontaneously hypertensive rats is associated with cortical renal GLUT1 and GLUT2 overexpression. Our objective was to evaluate the effect of the angiotensin-converting enzyme blockade on cortical renal GLUT1 and GLUT2 expression, urinary albumin and urinary TGF-β1. Streptozotocin, 50 mg/kg, or citrate buffer (N = 16) was administered as a single injection into the tail vein in adult spontaneously hypertensive rats (~260 g). Thirty days later, these diabetic spontaneously hypertensive rats received ramipril by gavage: 0.01 mg·kg-1·day-1 (D0.01, N = 14), 1 mg·kg-1·day-1 (D1, N = 9) or water (D, N = 11) for 15 days. Albumin and TGF-β1 (24-h urine), direct arterial pressure, renal tissue angiotensin-converting enzyme activity (fluorometric assay), and GLUT1 and GLUT2 protein levels (Western blot, renal cortex) were determined. Glycemia and glycosuria were higher (P < 0.05) in the diabetic rats compared with controls, but similar between the diabetic groups. Diabetes in spontaneously hypertensive rats lowered renal tissue angiotensin-converting enzyme activity (40%), which was reduced further when higher ramipril doses were used. Diabetes associated with hypertension raised GLUT1 by 28% (P < 0.0001) and GLUT2 by 76% (P = 0.01), and both doses of ramipril equally reduced cortical GLUT1 (D vs D1 and vs D0.01, P ≤ 0.001). GLUT2 levels were reduced in D0.01 (P < 0.05 vs D). Diabetes increased urinary albumin and TGF-β1 urinary excretion, but the 15-day ramipril treatment (with either dose) did not reduce them. In conclusion, ramipril is effective in lowering renal tissue angiotensin-converting enzyme activity, as well as blocking cortical GLUT1 overexpression, which may be beneficial in arresting the development of diabetic nephropathy
Cyclic irrigation of turfgrass using a shallow saline aquifer
Utilization of poor quality waters in the urban landscape has the potential of saving large quantities of good quality water for higher priority uses. Bernudagrass in particular is well suited to be irrigated with poorer quality water. A two-year field study was conducted to determine the long-term effects of applying shallow saline aquifer water to two turfgrass sports fields. The water (0.69-- 3.4 dSm-1) was applied using cyclic irrigation during peak demand months (May--Oct). Treatments consisted of cycling saline water through the existing irrigation systems. Saline substitution of fresh water was set at 1, 2, 3 and 4 times per 7 freshwater irrigation events. Irrigations were applied using an ET feedback system and imposing a leaching fraction of 0.15. Turf color and cover, canopy temperature, bulk soil conductivity, soil moisture, leaf water potential, tissue moisture content and stomatal conductance were monitored on a bimonthly basis during the peak demand months. All plots except for control, were instrumented with tensiometers and salinity sensors. Soil samples (2430 total samples at the University and 1530 total samples at the high school site) were taken yearly from each plot in a 5 x 5 grid fashion and analyzed for soluble salts. (Abstract shortened by UMI.)
Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope
We present a new measurement of the kinematic Sunyaev-Zeldovich effect using
data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation
Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area,
we evaluate the mean pairwise baryon momentum associated with the positions of
50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A
non-zero signal arises from the large-scale motions of halos containing the
sample galaxies. The data fits an analytical signal model well, with the
optical depth to microwave photon scattering as a free parameter determining
the overall signal amplitude. We estimate the covariance matrix of the mean
pairwise momentum as a function of galaxy separation, using microwave sky
simulations, jackknife evaluation, and bootstrap estimates. The most
conservative simulation-based errors give signal-to-noise estimates between 3.6
and 4.1 for varying galaxy luminosity cuts. We discuss how the other error
determinations can lead to higher signal-to-noise values, and consider the
impact of several possible systematic errors. Estimates of the optical depth
from the average thermal Sunyaev-Zeldovich signal at the sample galaxy
positions are broadly consistent with those obtained from the mean pairwise
momentum signal.Comment: 15 pages, 8 figures, 2 table
Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey: Report of a Community Workshop Examining Extragalactic, Galactic, Stellar and Planetary Science
SPHEREx is a proposed SMEX mission selected for Phase A. SPHEREx will carry
out the first all-sky spectral survey and provide for every 6.2" pixel a
spectra between 0.75 and 4.18 m [with R41.4] and 4.18 and 5.00
m [with R135]. The SPHEREx team has proposed three specific science
investigations to be carried out with this unique data set: cosmic inflation,
interstellar and circumstellar ices, and the extra-galactic background light.
It is readily apparent, however, that many other questions in astrophysics and
planetary sciences could be addressed with the SPHEREx data. The SPHEREx team
convened a community workshop in February 2016, with the intent of enlisting
the aid of a larger group of scientists in defining these questions. This paper
summarizes the rich and varied menu of investigations that was laid out. It
includes studies of the composition of main belt and Trojan/Greek asteroids;
mapping the zodiacal light with unprecedented spatial and spectral resolution;
identifying and studying very low-metallicity stars; improving stellar
parameters in order to better characterize transiting exoplanets; studying
aliphatic and aromatic carbon-bearing molecules in the interstellar medium;
mapping star formation rates in nearby galaxies; determining the redshift of
clusters of galaxies; identifying high redshift quasars over the full sky; and
providing a NIR spectrum for most eROSITA X-ray sources. All of these
investigations, and others not listed here, can be carried out with the nominal
all-sky spectra to be produced by SPHEREx. In addition, the workshop defined
enhanced data products and user tools which would facilitate some of these
scientific studies. Finally, the workshop noted the high degrees of synergy
between SPHEREx and a number of other current or forthcoming programs,
including JWST, WFIRST, Euclid, GAIA, K2/Kepler, TESS, eROSITA and LSST.Comment: Report of the First SPHEREx Community Workshop,
http://spherex.caltech.edu/Workshop.html , 84 pages, 28 figure
The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters
We present the temperature and polarization angular power spectra measured by
the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time
data collected during 2013-14 using two detector arrays at 149 GHz, from 548
deg of sky on the celestial equator. We use these spectra, and the spectra
measured with the MBAC camera on ACT from 2008-10, in combination with Planck
and WMAP data to estimate cosmological parameters from the temperature,
polarization, and temperature-polarization cross-correlations. We find the new
ACTPol data to be consistent with the LCDM model. The ACTPol
temperature-polarization cross-spectrum now provides stronger constraints on
multiple parameters than the ACTPol temperature spectrum, including the baryon
density, the acoustic peak angular scale, and the derived Hubble constant.
Adding the new data to planck temperature data tightens the limits on damping
tail parameters, for example reducing the joint uncertainty on the number of
neutrino species and the primordial helium fraction by 20%.Comment: 23 pages, 25 figure
CMB-S4 Science Book, First Edition
This book lays out the scientific goals to be addressed by the
next-generation ground-based cosmic microwave background experiment, CMB-S4,
envisioned to consist of dedicated telescopes at the South Pole, the high
Chilean Atacama plateau and possibly a northern hemisphere site, all equipped
with new superconducting cameras. CMB-S4 will dramatically advance cosmological
studies by crossing critical thresholds in the search for the B-mode
polarization signature of primordial gravitational waves, in the determination
of the number and masses of the neutrinos, in the search for evidence of new
light relics, in constraining the nature of dark energy, and in testing general
relativity on large scales
Molecular bases of diabetic nephropathy
The determinant of the diabetic nephropathy is hyperglycemia, but hypertension and other genetic factors are also involved. Glomerulus is the focus of the injury, where mesangial cell proliferation and extracellular matrix occur because of the increase of the intra- and extracellular glucose concentration and overexpression of GLUT1. Sequentially, there are increases in the flow by the poliol pathway, oxidative stress, increased intracellular production of advanced glycation end products (AGEs), activation of the PKC pathway, increase of the activity of the hexosamine pathway, and activation of TGF-beta1. High glucose concentrations also increase angiotensin II (AII) levels. Therefore, glucose and AII exert similar effects in inducing extracellular matrix formation in the mesangial cells, using similar transductional signal, which increases TGF-beta1 levels. In this review we focus in the effect of glucose and AII in the mesangial cells in causing the events related to the genesis of diabetic nephropathy. The alterations in the signal pathways discussed in this review give support to the observational studies and clinical assays, where metabolic and antihypertensive controls obtained with angiotensin-converting inhibitors have shown important and additive effect in the prevention of the beginning and progression of diabetic nephropathy. New therapeutic strategies directed to the described intracellular events may give future additional benefits.O principal determinante da nefropatia diabética é a hiperglicemia, mas hipertensão e fatores genéticos também estão envolvidos. O glomérulo é o foco de lesão, onde proliferação celular mesangial e produção excessiva de matriz extracelular decorrem do aumento da glicose intracelular, por excesso de glicose extracelular e hiperexpressão de GLUT1. Seguem-se aumento do fluxo pela via dos polióis, estresse oxidativo intracelular, produção intracelular aumentada de produtos avançados da glicação não enzimática (AGEs), ativação da via da PKC, aumento da atividade da via das hexosaminas e ativação de TGF-beta1. Altas concentrações de glicose também aumentam angiotensina II (AII) nas células mesangiais por aumento intracelular da atividade da renina (ações intrácrinas, mediando efeitos proliferativos e inflamatórios diretamente). Portanto, glicose e AII exercem efeitos proliferativos celulares e de matriz extracelular nas células mesangiais, utilizando vias de transdução de sinais semelhantes, que levam a aumento de TGF-beta1. Nesse estudo são revisadas as vias que sinalizam os efeitos da glicose e AII nas células mesangiais em causar os eventos-chaves relacionados à gênese da glomerulopatia diabética. As alterações das vias de sinalização implicadas na glomerulopatia, aqui revisadas, suportam dados de estudos observacionais/ensaios clínicos, onde controle metabólico e anti-hipertensivo, especificamente com inibidores do sistema renina-angiotensina, têm-se mostrado importantes - e aditivos - na prevenção do início e progressão da nefropatia. Novas estratégias terapêuticas dirigidas aos eventos intracelulares descritos deverão futuramente promover benefício adicional.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)HC Instituto do Coração Unidade de HipertensãoUSP FMUniversidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Laboratório de NefrologiaFundação Universitária de Cardiologia Instituto de Cardiologia Laboratório de Cardiologia Molecular e CelularUNIFESP, EPM, Laboratório de NefrologiaSciEL
The beneficial effects of exercise in rodents are preserved after detraining: a phenomenon unrelated to GLUT4 expression
<p>Abstract</p> <p>Background</p> <p>Although exercise training has well-known cardiorespiratory and metabolic benefits, low compliance with exercise training programs is a fact, and the harmful effects of physical detraining regarding these adaptations usually go unnoticed. We investigated the effects of exercise detraining on blood pressure, insulin sensitivity, and GLUT4 expression in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY).</p> <p>Methods</p> <p>Studied animals were randomized into sedentary, trained (treadmill running/5 days a week, 60 min/day for 10 weeks), 1 week of detraining, and 2 weeks of detraining. Blood pressure (tail-cuff system), insulin sensitivity (kITT), and GLUT4 (Western blot) in heart, gastrocnemius and white fat tissue were measured.</p> <p>Results</p> <p>Exercise training reduced blood pressure (19%), improved insulin sensitivity (24%), and increased GLUT4 in the heart (+34%); gastrocnemius (+36%) and fat (+22%) in SHR. In WKY no change in either blood pressure or insulin sensitivity were observed, but there was an increase in GLUT4 in the heart (+25%), gastrocnemius (+45%) and fat (+36%) induced by training. Both periods of detraining did not induce any change in neither blood pressure nor insulin sensitivity in SHR and WKY. One-week detraining reduced GLUT4 in SHR (heart: -28%; fat: -23%) and WKY (heart: -19%; fat: -22%); GLUT4 in the gastrocnemius was reduced after a 2-week detraining (SHR: -35%; WKY: -25%). There was a positive correlation between GLUT4 (gastrocnemius) and the maximal velocity in the exercise test (r = 0.60, p = 0.004).</p> <p>Conclusions</p> <p>The study findings show that in detraining, despite reversion of the enhanced GLUT4 expression, cardiorespiratory and metabolic beneficial effects of exercise are preserved.</p
Erratum to: The study of cardiovascular risk in adolescents – ERICA: rationale, design and sample characteristics of a national survey examining cardiovascular risk factor profile in Brazilian adolescents
1585
- …
