566 research outputs found
Towards automatic pulmonary nodule management in lung cancer screening with deep learning
The introduction of lung cancer screening programs will produce an
unprecedented amount of chest CT scans in the near future, which radiologists
will have to read in order to decide on a patient follow-up strategy. According
to the current guidelines, the workup of screen-detected nodules strongly
relies on nodule size and nodule type. In this paper, we present a deep
learning system based on multi-stream multi-scale convolutional networks, which
automatically classifies all nodule types relevant for nodule workup. The
system processes raw CT data containing a nodule without the need for any
additional information such as nodule segmentation or nodule size and learns a
representation of 3D data by analyzing an arbitrary number of 2D views of a
given nodule. The deep learning system was trained with data from the Italian
MILD screening trial and validated on an independent set of data from the
Danish DLCST screening trial. We analyze the advantage of processing nodules at
multiple scales with a multi-stream convolutional network architecture, and we
show that the proposed deep learning system achieves performance at classifying
nodule type that surpasses the one of classical machine learning approaches and
is within the inter-observer variability among four experienced human
observers.Comment: Published on Scientific Report
Computer-assisted detection of pulmonary embolism: evaluation of pulmonary CT angiograms performed in an on-call setting
Computer-assisted detection of pulmonary embolism: evaluation of pulmonary CT angiograms performed in an on-call setting
Optimization Strategies for Interactive Classification of Interstitial Lung Disease Textures
For computerized analysis of textures in interstitial lung disease, manual annotations of lung tissue are necessary. Since making these annotations is labor intensive, we previously proposed an interactive annotation framework. In this framework, observers iteratively trained a classifier to distinguish the different texture types by correcting its classification errors. In this work, we investigated three ways to extend this approach, in order to decrease the amount of user interaction required to annotate all lung tissue in a computed tomography scan. First, we conducted automatic classification experiments to test how data from previously annotated scans can be used for classification of the scan under consideration. We compared the performance of a classifier trained on data from one observer, a classifier trained on data from multiple observers, a classifier trained on consensus training data, and an ensemble of classifiers, each trained on data from different sources. Experiments were conducted without and with texture selection (ts). In the former case, training data from all eight textures was used. In the latter, only training data from the texture types present in the scan were used, and the observer would have to indicate textures contained in the scan to be analyzed. Second, we simulated interactive annotation to test the effects of (1) asking observers to perform ts before the start of annotation, (2) the use of a classifier trained on data from previously annotated scans at the start of annotation, when the interactive classifier is untrained, and (3) allowing observers to choose which interactive or automatic classification results they wanted to correct. Finally, various strategies for selecting the classification results that were presented to the observer were considered. Classification accuracies for all possible interactive annotation scenarios were compared. Using the best-performing protocol, in which observers select the textures that should be distinguished in the scan and in which they can choose which classification results to use for correction, a median accuracy of 88% was reached. The results obtained using this protocol were significantly better than results obtained with other interactive or automatic classification protocols
State-of-the-Art Multi-Detector CT Angiography in Acute Pulmonary Embolism: Technique, Interpretation and Future Perspectives
Strange Bodies and Familiar Spaces: W. J. R. Simpson and the threat of disease in Calcutta and the tropical city, 1880 - 1910
This thesis discusses the role of urban sanitation in tropical cities, especially Calcutta. Focusing particularly on the provision of milk, the author argues that hygienic practice, and the culture of nineteenth-century tropical medicine, created more diffuse racial deliniations than usually assumed by historians [abstracted by librarian]
Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database
Objectives: To benchmark the performance of state-of-the-art computer-aided detection (CAD) of pulmonary nodules using the largest publicly available annotated CT database (LIDC/IDRI), and to show that CAD finds lesions not identified by the LIDC’s four-fold double reading process. Methods: The LIDC/IDRI database contains 888 thoracic CT scans with a section thickness of 2.5 mm or lower. We report performance of two commercial and one academic CAD system. The influence of presence of contrast, section thickness, and reconstruction kernel on CAD performance was assessed. Four radiologists independently analyzed the false positive CAD marks of the best CAD system. Results: The updated commercial CAD system showed the best performance with a sensitivity of 82 % at an average of 3.1 false positive detections per scan. Forty-five false positive CAD marks were scored as nodules by all four radiologists in our study. Conclusions: On the largest publicly available reference database for lung nodule detection in chest CT, the updated commercial CAD system locates the vast majority of pulmonary nodules at a low false positive rate. Potential for CAD is substantiated by the fact that it identifies pulmonary nodules that were not marked during the extensive four-fold LIDC annotation process
- …
