2,386 research outputs found

    Random trees between two walls: Exact partition function

    Full text link
    We derive the exact partition function for a discrete model of random trees embedded in a one-dimensional space. These trees have vertices labeled by integers representing their position in the target space, with the SOS constraint that adjacent vertices have labels differing by +1 or -1. A non-trivial partition function is obtained whenever the target space is bounded by walls. We concentrate on the two cases where the target space is (i) the half-line bounded by a wall at the origin or (ii) a segment bounded by two walls at a finite distance. The general solution has a soliton-like structure involving elliptic functions. We derive the corresponding continuum scaling limit which takes the remarkable form of the Weierstrass p-function with constrained periods. These results are used to analyze the probability for an evolving population spreading in one dimension to attain the boundary of a given domain with the geometry of the target (i) or (ii). They also translate, via suitable bijections, into generating functions for bounded planar graphs.Comment: 25 pages, 7 figures, tex, harvmac, epsf; accepted version; main modifications in Sect. 5-6 and conclusio

    The redshift evolution of bias and baryonic matter distribution

    Get PDF
    We study the distribution of baryonic and luminous matter within the framework of a hierarchical scenario. Using an analytical model for structure formation which has already been checked against observations for galaxies, Lyman-α\alpha clouds, clusters and reionization processes, we present its predictions for the bias of these objects. We describe its dependence on the luminosity (for galaxies or quasars) or the column density (for Lyman-α\alpha absorbers) of the considered objects. We also study its redshift evolution, which can exhibit an intricate behaviour. These astrophysical objects do not trace the dark matter density field, the Lyman-α\alpha forest clouds being undercorrelated and the bright galaxies overcorrelated, while the intermediate class of Lyman-limit systems is seen to sample the matter field quite well. We also present the distribution of baryonic matter over these various objects. We show that light does not trace baryonic mass, since bright galaxies which contain most of the stars only form a small fraction of the mass associated with virialized and cooled halos. We consider two cosmologies: a critical density universe and an open universe. In both cases, our results agree with observations and show that hierarchical scenarios provide a good model for structure formation and can describe a wide range of objects which spans at least the seven orders of magnitude in mass for which data exist. More detailed observations, in particular of the clustering evolution of galaxies, will constrain the astrophysical models involved.Comment: 13 pages, final version published in A&

    Distance statistics in large toroidal maps

    Full text link
    We compute a number of distance-dependent universal scaling functions characterizing the distance statistics of large maps of genus one. In particular, we obtain explicitly the probability distribution for the length of the shortest non-contractible loop passing via a random point in the map, and that for the distance between two random points. Our results are derived in the context of bipartite toroidal quadrangulations, using their coding by well-labeled 1-trees, which are maps of genus one with a single face and appropriate integer vertex labels. Within this framework, the distributions above are simply obtained as scaling limits of appropriate generating functions for well-labeled 1-trees, all expressible in terms of a small number of basic scaling functions for well-labeled plane trees.Comment: 24 pages, 9 figures, minor corrections, new added reference

    Confluence of geodesic paths and separating loops in large planar quadrangulations

    Full text link
    We consider planar quadrangulations with three marked vertices and discuss the geometry of triangles made of three geodesic paths joining them. We also study the geometry of minimal separating loops, i.e. paths of minimal length among all closed paths passing by one of the three vertices and separating the two others in the quadrangulation. We concentrate on the universal scaling limit of large quadrangulations, also known as the Brownian map, where pairs of geodesic paths or minimal separating loops have common parts of non-zero macroscopic length. This is the phenomenon of confluence, which distinguishes the geometry of random quadrangulations from that of smooth surfaces. We characterize the universal probability distribution for the lengths of these common parts.Comment: 48 pages, 33 color figures. Final version, with one concluding paragraph and one reference added, and several other small correction

    Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop

    Full text link
    We consider quadrangulations with a boundary and derive explicit expressions for the generating functions of these maps with either a marked vertex at a prescribed distance from the boundary, or two boundary vertices at a prescribed mutual distance in the map. For large maps, this yields explicit formulas for the bulk-boundary and boundary-boundary correlators in the various encountered scaling regimes: a small boundary, a dense boundary and a critical boundary regime. The critical boundary regime is characterized by a one-parameter family of scaling functions interpolating between the Brownian map and the Brownian Continuum Random Tree. We discuss the cases of both generic and self-avoiding boundaries, which are shown to share the same universal scaling limit. We finally address the question of the bulk-loop distance statistics in the context of planar quadrangulations equipped with a self-avoiding loop. Here again, a new family of scaling functions describing critical loops is discovered.Comment: 55 pages, 14 figures, final version with minor correction

    Multicritical continuous random trees

    Full text link
    We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps

    Assessment of human enteric viruses in cultured and wild bivalve molluscs

    Get PDF
    Standard and real-time reverse transcription-PCR (rRT-PCR) procedures were used to monitor cultured and wild bivalve molluscs from the Ría de Vigo (NW Spain) for the main human enteric RNA viruses, specifically, norovirus (NoV), hepatitis Avirus (HAV), astrovirus (AsV), rotavirus (RT), enterovirus (EV), and Aichi virus (AiV). The results showed the presence of at least one enteric virus in 63.4% of the 41 samples analyzed. NoV GII was the most prevalent virus, detected in 53.7% of the samples, while NoV GI, AsV, EV, and RV were found at lower percentages (7.3, 12.2, 12.2, and 4.9%, respectively). In general, samples obtained in the wild were more frequently contaminated than those from cultured (70.6 vs. 58.3%) molluscs and were more readily contaminated with more than one virus. However, NoV GI was detected in similar amounts in cultured and wild samples (6.4 × 102 to 3.3 × 103 RNA copies per gram of digestive tissue) while the concentrations of NoV GII were higher in cultured (from 5.6 × 101 to 1.5 × 104 RNA copies per gram of digestive tissue) than in wild (from 1.3 × 102 to 3.4 × 104 RNA copies per gram of digestive tissue) samples. [Int Microbiol 2009; 12(3):145-151

    Loop models on random maps via nested loops: case of domain symmetry breaking and application to the Potts model

    Full text link
    We use the nested loop approach to investigate loop models on random planar maps where the domains delimited by the loops are given two alternating colors, which can be assigned different local weights, hence allowing for an explicit Z_2 domain symmetry breaking. Each loop receives a non local weight n, as well as a local bending energy which controls loop turns. By a standard cluster construction that we review, the Q = n^2 Potts model on general random maps is mapped to a particular instance of this problem with domain-non-symmetric weights. We derive in full generality a set of coupled functional relations for a pair of generating series which encode the enumeration of loop configurations on maps with a boundary of a given color, and solve it by extending well-known complex analytic techniques. In the case where loops are fully-packed, we analyze in details the phase diagram of the model and derive exact equations for the position of its non-generic critical points. In particular, we underline that the critical Potts model on general random maps is not self-dual whenever Q \neq 1. In a model with domain-symmetric weights, we also show the possibility of a spontaneous domain symmetry breaking driven by the bending energy.Comment: 44 pages, 13 figure

    Metabolism regulates exposure of pancreatic islets to circulating molecules in vivo.

    Get PDF
    International audiencePancreatic β-cells modulate insulin secretion through rapid sensing of blood glucose and integration of gut-derived signals. Increased insulin demand during pregnancy and obesity alters islet function and mass and leads to gestational diabetes mellitus and type 2 diabetes in predisposed individuals. However, it is unclear how blood-borne factors dynamically access the islets of Langerhans. Thus, understanding the changes in circulating molecule distribution that accompany compensatory β-cell expansion may be key to developing novel antidiabetic therapies. Here, using two-photon microscopy in vivo in mice, we demonstrate that islets are almost instantly exposed to peaks of circulating molecules, which rapidly pervade the tissue before clearance. In addition, both gestation and short-term high-fat-diet feeding decrease molecule extravasation and uptake rates in vivo in islets, independently of β-cell expansion or islet blood flow velocity. Together, these data support a role for islet vascular permeability in shaping β-cell adaptive responses to metabolic demand by modulating the access and sensing of circulating molecules

    Cosmic Statistics of Statistics

    Get PDF
    The errors on statistics measured in finite galaxy catalogs are exhaustively investigated. The theory of errors on factorial moments by Szapudi & Colombi (1996) is applied to cumulants via a series expansion method. All results are subsequently extended to the weakly non-linear regime. Together with previous investigations this yields an analytic theory of the errors for moments and connected moments of counts in cells from highly nonlinear to weakly nonlinear scales. The final analytic formulae representing the full theory are explicit but somewhat complicated. Therefore as a companion to this paper we supply a FORTRAN program capable of calculating the described quantities numerically (abridged).Comment: 18 pages, 9 figures, Latex (MN format), published in MNRAS 310, 428 with slight correction
    corecore