570 research outputs found

    Deuterium-burning in substellar objects

    Get PDF
    We consider the depletion of primordial deuterium in the interior of substellar objects as a function of mass, age and absolute magnitude in several photometric passbands. We characterize potential spectroscopic signatures of deuterium in the lines of deuterated water HDO. These results will serve as a useful, independent diagnostic to characterize the mass and/or the age of young substellar objects, and to provide an independent age determination of very young clusters. These results can serve to identify objects at the deuterium-burning limit and to confront the theoretical prediction that D-burning is a necessary condition to form star-like objects.Comment: 13 pages, Latex file, uses aasms4.sty, accepted for publication in ApJ Letter

    Polar confinement of the Sun's interior magnetic field by laminar magnetostrophic flow

    Full text link
    The global-scale interior magnetic field needed to account for the Sun's observed differential rotation can be effective only if confined below the convection zone in all latitudes, including the polar caps. Axisymmetric nonlinear MHD solutions are obtained showing that such confinement can be brought about by a very weak downwelling flow U~10^{-5}cm/s over each pole. Such downwelling is consistent with the helioseismic evidence. All three components of the magnetic field decay exponentially with altitude across a thin "magnetic confinement layer" located at the bottom of the tachocline. With realistic parameter values, the thickness of the confinement layer ~10^{-3} of the Sun's radius. Alongside baroclinic effects and stable thermal stratification, the solutions take into account the stable compositional stratification of the helium settling layer, if present as in today's Sun, and the small diffusivity of helium through hydrogen, chi. The small value of chi relative to magnetic diffusivity produces a double boundary-layer structure in which a "helium sublayer" of smaller vertical scale is sandwiched between the top of the helium settling layer and the rest of the confinement layer. Solutions are obtained using both semi-analytical and purely numerical, finite-difference techniques. The confinement-layer flows are magnetostrophic to excellent approximation. More precisely, the principal force balances are between Lorentz, Coriolis, pressure-gradient and buoyancy forces, with relative accelerations and viscous forces negligible. This is despite the kinematic viscosity being somewhat greater than chi. We discuss how the confinement layers at each pole might fit into a global dynamical picture of the solar tachocline. That picture, in turn, suggests a new insight into the early Sun and into the longstanding enigma of solar lithium depletion.Comment: Accepted by JFM. 36 pages, 10 figure

    Stellar Hydrodynamics in Radiative Regions

    Full text link
    We present an analysis of the response of a radiative region to waves generated by a convective region of the star; this wave treatment of the classical problem of ``overshooting'' gives extra mixing relative to the treatment traditionally used in stellar evolutionary codes. The interface between convectively stable and unstable regions is dynamic and nonspherical, so that the nonturbulent material is driven into motion, even in the absence of ``penetrative overshoot.'' These motions may be described by the theory of nonspherical stellar pulsations, and are related to motion measured by helioseismology. Multi-dimensional numerical simulations of convective flow show puzzling features which we explain by this simplified physical model. Gravity waves generated at the interface are dissipated, resulting in slow circulation and mixing seen outside the formal convection zone. The approach may be extended to deal with rotation and composition gradients. Tests of this description in the stellar evolution code TYCHO produce carbon stars on the asymptotic giant branch (AGB), an isochrone age for the Hyades and three young clusters with lithium depletion ages from brown dwarfs, and lithium and beryllium depletion consistent with observations of the Hyades and Pleiades, all without tuning parameters. The insight into the different contributions of rotational and hydrodynamic mixing processes could have important implications for realistic simulation of supernovae and other questions in stellar evolution.Comment: 27 pages, 5 figures, accepted to the Astrophysical Journa

    Reflection and Ducting of Gravity Waves Inside the Sun

    Get PDF
    Internal gravity waves excited by overshoot at the bottom of the convection zone can be influenced by rotation and by the strong toroidal magnetic field that is likely to be present in the solar tachocline. Using a simple Cartesian model, we show how waves with a vertical component of propagation can be reflected when traveling through a layer containing a horizontal magnetic field with a strength that varies with depth. This interaction can prevent a portion of the downward-traveling wave energy flux from reaching the deep solar interior. If a highly reflecting magnetized layer is located some distance below the convection zone base, a duct or wave guide can be set up, wherein vertical propagation is restricted by successive reflections at the upper and lower boundaries. The presence of both upward- and downward-traveling disturbances inside the duct leads to the existence of a set of horizontally propagating modes that have significantly enhanced amplitudes. We point out that the helical structure of these waves makes them capable of generating an alpha-effect, and briefly consider the possibility that propagation in a shear of sufficient strength could lead to instability, the result of wave growth due to over-reflection.Comment: 23 pages, 5 figures. Accepted for publication in Solar Physic

    The Effect of Stellar Rotation on Colour-Magnitude Diagrams: On the apparent presence of multiple populations in intermediate age stellar clusters

    Full text link
    A significant number of intermediate age clusters (1-2 Gyr) in the Magellanic Clouds appear to have multiple stellar populations within them, derived from bi-modal or extended main sequence turn offs. If this is interpreted as an age spread, the multiple populations are separated by a few hundred Myr, which would call into question the long held notion that clusters are simple stellar populations. Here we show that stellar rotation in stars with masses between 1.2-1.7 Msun can mimic the effect of a double or multiple population, whereas in actuality only a single population exists. The two main causes of the spread near the turn-off are the effects of stellar rotation on the structure of the star and the inclination angle of the star relative to the observer. Both effects change the observed effective temperature, hence colour, and flux of the star. In order to match observations, the required rotation rates are 20-50% of the critical rotation, which are consistent with observed rotation rates of similar mass stars in the Galaxy. We provide scaling relations which can be applied to non-rotating isochrones in order to mimic the effects of rotation. Finally, we note that rotation is unlikely to be the cause of the multiple stellar populations observed in old globular clusters, as low mass stars (<1 Msun) are not expected to be rapid rotators.Comment: 5 pages, 1 figure, MNRAS letters, in pres

    'The world is full of big bad wolves': investigating the experimental therapeutic spaces of R.D. Laing and Aaron Esterson

    Get PDF
    In conjunction with the recent critical assessments of the life and work of R.D. Laing, this paper seeks to demonstrate what is revealed when Laing’s work on families and created spaces of mental health care are examined through a geographical lens. The paper begins with an exploration of Laing’s time at the Tavistock Clinic in London during the 1960s, and of the co-authored text with Aaron Esterson entitled, Sanity, Madness and the Family (1964). The study then seeks to demonstrate the importance Laing and his colleague placed on the time-space situatedness of patients and their worlds. Finally, an account is provided of Laing’s and Esterson’s spatial thinking in relation to their creation of both real and imagined spaces of therapeutic care

    The Simon and Simon-Mars Tensors for Stationary Einstein-Maxwell Fields

    Full text link
    Modulo conventional scale factors, the Simon and Simon-Mars tensors are defined for stationary vacuum spacetimes so that their equality follows from the Bianchi identities of the second kind. In the nonvacuum case one can absorb additional source terms into a redefinition of the Simon tensor so that this equality is maintained. Among the electrovacuum class of solutions of the Einstein-Maxwell equations, the expression for the Simon tensor in the Kerr-Newman-Taub-NUT spacetime in terms of the Ernst potential is formally the same as in the vacuum case (modulo a scale factor), and its vanishing guarantees the simultaneous alignment of the principal null directions of the Weyl tensor, the Papapetrou field associated with the timelike Killing vector field, the electromagnetic field of the spacetime and even the Killing-Yano tensor.Comment: 12 pages, Latex IOP article class, no figure

    Dielectric Properties of the Quasi-Two-Dimensional Electron Liquid in Heterojunctions

    Full text link
    A quasi-two-dimensional (Q2D) electron liquid (EL) is formed at the interface of a semiconductor heterojunction. For an accurate characterization of the Q2D EL, many-body effects need to be taken into account beyond the random phase approximation. In this theoretical work, the self-consistent static local-field correction known as STLS is applied for the analysis of the Q2D EL. The penetration of the charge distribution to the barrier-acting material is taken into consideration through a variational approach. The Coulomb from factor that describes the effective 2D interaction is rigorously treated. The longitudinal dielectric function and the plasmon dispersion of the Q2D EL are presented for a wide range of electron and ionized acceptor densities choosing GaAs/AlGaAs as the physical system. Analytical expressions fitted to our results are also supplied to enable a widespread use of these results.Comment: 39 pages (in LaTeX), including 8 PostScript figure
    corecore