363 research outputs found

    Effects of a 12-week high-α-linolenic acid intervention on EPA and DHA concentrations in red blood cells and plasma oxylipin pattern in subjects with a low EPA and DHA status

    Get PDF
    The essential omega-3 fatty acid alpha-linolenic acid (ALA, 18:3n3) can be converted into EPA and DHA. The aim of the present study was to determine the effect of a high-ALA diet on EPA and DHA levels in red blood cells (RBCs) and their oxylipins in the plasma of subjects with a low EPA and DHA status. Fatty acid concentrations [μg mL−1] and relative amounts [% of total fatty acids] in the RBCs of 19 healthy men (mean age 26.4 ± 4.6 years) were analyzed by means of GC-FID. Free plasma oxylipin concentrations were determined by LC-MS based targeted metabolomics. Samples were collected and analyzed at baseline (week 0) and after 1 (week 1), 3 (week 3), 6 (week 6), and 12 (week 12) weeks of high dietary ALA intake (14.0 ± 0.45 g day−1). ALA concentrations significantly (p < 0.001) increased from 1.44 ± 0.10 (week 0) to 4.65 ± 0.22 (week 1), 5.47 ± 0.23 (week 3), 6.25 ± 0.24 (week 6), and 5.80 ± 0.28 (week 12) μg mL−1. EPA concentrations increased from 6.13 ± 0.51 (week 0) to 7.33 ± 0.33 (week 1), 8.38 ± 0.42 (p = 0.021, week 3), 10.9 ± 0.67 (p < 0.001, week 6), and 11.0 ± 0.64 (p < 0.001, week 12) μg mL−1. DHA concentrations unexpectedly decreased from 41.0 ± 1.93 (week 0) to 37.0 ± 1.32 (week 1), 36.1 ± 1.37 (week 3), 35.1 ± 1.06 (p = 0.010, week 6), and 30.4 ± 1.09 (p < 0.001, week 12) μg mL−1. Relative ΣEPA + DHA amounts were unchanged during the intervention (week 0: 4.63 ± 0.19, week 1: 4.67 ± 0.16, week 3: 4.61 ± 0.13, week 6: 4.73 ± 0.15, week 12: 4.52 ± 0.11). ALA- and EPA-derived hydroxy- and dihydroxy-PUFA increased similarly to their PUFA precursors, although in the case of ALA-derived oxylipins, the concentrations increased less rapidly and to a lesser extent compared to the concentrations of their precursor FA. LA-derived oxylipins remained unchanged and arachidonic acid and DHA oxylipin concentrations were not significantly changed. Our results confirm that the intake of ALA is not a sufficient source for the increase of EPA + DHA in subjects on a Western diet. Specifically, a high-ALA diet results in increased EPA and declined DHA concentrations. However, the changes effectively balance each other out so that ΣEPA + DHA in RBCs – which is an established marker for health protective effects of omega-3-PUFA – remains constant. The PUFA levels in RBCs reflect the concentration and its changes in plasma hydroxy- and dihydroxy-PUFA concentrations for ALA and EPA

    Differential effects of EPA vs. DHA on postprandial vascular function and the plasma oxylipin profile in men

    Get PDF
    Our objective was to investigate the impact of EPA versus DHA, on arterial stiffness and reactivity, and underlying mechanisms (with a focus on plasma oxylipins), in the postprandial state. In a 3-arm cross-over acute test meal trial men (n=26, 35-55y) at increased CVD risk, received a high fat (42.4g) test meal providing 4.16 g of EPA or DHA or control oil in random order. At 0 h and 4 h, blood samples were collected to quantify plasma fatty acids, LCn-3PUFAs derived oxylipins, nitrite and hydrogen sulfide and serum lipids and glucose. Vascular function was assessed using blood pressure, Reactive Hyperaemia Index (RHI), Pulse Wave Velocity and Augmentation Index (AIx). The DHA-rich oil significantly reduced AIx by 13% (P=0.047) with the decrease following EPA-rich oil intervention not reaching statistical significance. Both interventions increased EPA and DHA derived oxylipins in the acute postprandial state, with an (1.3 fold) increase in 19,20-DiHDPA evident after DHA intervention (P < 0.001). In conclusion, a single dose of DHA significantly improved postprandial arterial stiffness as assessed by AIx, which if sustained would be associated with a significant decrease in CVD risk. The observed increases in oxylipins provide a mechanistic insight for the AIx effect

    Technical recommendations for analyzing oxylipins by liquid chromatography–mass spectrometry

    Get PDF
    Several oxylipins are potent lipid mediators that regulate diverse aspects of health and disease and whose quantitative analysis by liquid chromatography–mass spectrometry (LC-MS) presents substantial technical challenges. As members of the lipidomics community, we developed technical recommendations to ensure best practices when quantifying oxylipins by LC-MS.<br/

    Technical recommendations for analyzing oxylipins by liquid chromatography–mass spectrometry

    Get PDF
    Several oxylipins are potent lipid mediators that regulate diverse aspects of health and disease and whose quantitative analysis by liquid chromatography–mass spectrometry (LC-MS) presents substantial technical challenges. As members of the lipidomics community, we developed technical recommendations to ensure best practices when quantifying oxylipins by LC-MS.<br/

    APOE genotype modifies the plasma oxylipin response to omega-3 polyunsaturated fatty acid supplementation in healthy individuals

    Get PDF
    The omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), mediate inflammation in large part by affecting pro-inflammatory and anti-inflammatory/pro-resolving oxylipin concentrations. Common gene variants are thought to underlie the large inter-individual variation in oxylipin levels in response to n-3 PUFA supplementation, which in turn is likely to contribute to the overall heterogeneity in response to n-3 PUFA intervention. Given its known role in inflammation and as a modulator of the physiological response to EPA and DHA, here we explore, for the first time, the differential response of plasma hydroxy-, epoxy- and dihydroxy-arachidonic acid, EPA and DHA oxylipins according to apolipoprotein E (APOE) genotype using samples from a dose-response parallel design RCT. Healthy participants were given doses of EPA+DHA equivalent to intakes of 1, 2, and 4 portions of oily fish per week for 12 months. There was no difference in the plasma levels of EPA, DHA or ARA between the wildtype APOE3/E3 and APOE4 carrier groups after 3 or 12 months of n-3 PUFA supplementation. At 12 months, hydroxy EPAs (HEPEs) and hydroxy-DHAs (HDHAs) were higher in APOE4 carriers, with the difference most evident at the highest EPA+DHA intake. A significant APOE *n-3 PUFA dose effect was observed for the CYP-ω hydroxylase products 19-HEPE (p = 0.027) and 20-HEPE (p = 0.011). 8-HEPE, which, along with several other plasma oxylipins, is an activator of peroxisome proliferator activated receptors (PPARs), showed the highest fold change in APOE4 carriers (14-fold) compared to APOE3/E3 (4-fold) (p = 0.014). Low basal plasma EPA levels (EPA 1.22% of total fatty acids). In conclusion, APOE genotype modulated the plasma oxylipin response to increased EPA+DHA intake, with APOE4 carriers presenting with the greatest increases following high dose n-3 PUFA supplementation for 12 months

    Editorial—Special issue of the 7th European workshop on lipid mediators

    Get PDF
    The Seventh European Workshop on Lipid Mediators (7EWLM) was held at Université catholique de Louvain in Brussels, Belgium September 12-14, 2018. The aim of the workshop was to bring together those researchers and students interested in the field of bioactive lipid mediators. The seventh edition of this biennial workshop was organized by Giulio Muccioli, Mireille Alhouayek, Gerard Bannenberg, Joan Clària, Per-Johan Jakobsson, Xavier Norel, Nils Helge Schebb and Chengcan Yao. The three-day event provided a good opportunity for participants to present their work, and enjoy a variety of presentations by experts, a session for young scientists, an educational session on analytical chemistry of lipid mediators, and poster sessions (see full program and download the abstract book athttps://workshop-lipid.eu//7EWLM/index.php?cat=Program) [...

    Single-dose SDA-Rich echium oil increases plasma EPA, DPAn3, and DHA Concentrations

    Get PDF
    The omega-3 (n3) polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with health benefits. The primary dietary source of EPA and DHA is seafood. Alpha-linoleic acid (ALA) has not been shown to be a good source for EPA and DHA; however, stearidonic acid (SDA)—which is naturally contained in echium oil (EO)—may be a more promising alternative. This study was aimed at investigating the short-term n3 PUFA metabolism after the ingestion of a single dose of EO. Healthy young male subjects (n = 12) ingested a single dose of 26 g of EO after overnight fasting. Plasma fatty acid concentrations and relative amounts were determined at baseline and 2, 4, 6, 8, 24, 48, and 72 h after the ingestion of EO. During the whole examination period, the participants received standardized nutrition. Plasma ALA and SDA concentrations increased rapidly after the single dose of EO. Additionally, EPA and DPAn3 concentrations both increased significantly by 47% after 72 h compared to baseline; DHA concentrations also significantly increased by 21% after 72 h. To conclude, EO increases plasma ALA, SDA, EPA, DPAn3, and DHA concentrations and may be an alternative source for these n3 PUFAs

    Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo - a comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet

    Get PDF
    Dietary intervention and genetic fat-1 mice are two models for the investigation of effects associated with omega-3 polyunsaturated fatty acids (n3-PUFA). In order to assess their power to modulate the fatty acid and oxylipin pattern, we thoroughly compared fat-1 and wild-type C57BL/6 mice on a sunflower oil diet with wild-type mice on the same diet enriched with 1% EPA and 1% DHA for 0, 7, 14, 30 and 45 days. Feeding led after 14-30 days to a high steady state of n3-PUFA in all tissues at the expense of n6-PUFAs. Levels of n3-PUFA achieved by feeding were higher compared to fat-1 mice, particularly for EPA (max. 1.7% in whole blood of fat-1 vs. 7.8% following feeding). Changes in PUFAs were reflected in most oxylipins in plasma, brain and colon: Compared to wild-type mice on a standard diet, arachidonic acid metabolites were overall decreased while EPA and DHA oxylipins increased with feeding more than in fat-1 mice. In plasma of n3-PUFA fed animals, EPA and DHA metabolites from the lipoxygenase and cytochrome P450 pathways dominated over ARA derived counterparts.Fat-1 mice show n3-PUFA level which can be reached by dietary interventions, supporting the applicability of this model in n3-PUFA research. However, for specific questions, e.g. the role of EPA derived mediators or concentration dependent effects of (individual) PUFA, feeding studies are necessary

    Development of an online SPE–LC–MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors

    Get PDF
    Soluble epoxide hydrolase (sEH) is a promising therapeutic target for the treatment of hypertension, pain, and inflammation-related diseases. In order to enable the development of sEH inhibitors (sEHIs), assays are needed for determination of their potency. Therefore, we developed a new method utilizing an epoxide of arachidonic acid (14(15)-EpETrE) as substrate. Incubation samples were directly injected without purification into an online solid phase extraction (SPE) liquid chromatography electrospray ionization tandem mass spectrometry (LC–ESI–MS–MS) setup allowing a total run time of only 108 s for a full gradient separation. Analytes were extracted from the matrix within 30 s by turbulent flow chromatography. Subsequently, a full gradient separation was carried out on a 50X2.1 mm RP-18 column filled with 1.7 μm core–shell particles. The analytes were detected with high sensitivity by ESI–MS–MS in SRM mode. The substrate 14(15)-EpETrE eluted at a stable retention time of 96 ± 1 s and its sEH hydrolysis product 14,15-DiHETrE at 63 ± 1 s with narrow peak width (full width at half maximum height: 1.5 ± 0.1 s). The analytical performance of the method was excellent, with a limit of detection of 2 fmol on column, a linear range of over three orders of magnitude, and a negligible carry-over of 0.1% for 14,15-DiHETrE. The enzyme assay was carried out in a 96-well plate format, and near perfect sigmoidal dose–response curves were obtained for 12 concentrations of each inhibitor in only 22 min, enabling precise determination of IC50 values. In contrast with other approaches, this method enables quantitative evaluation of potent sEHIs with picomolar potencies because only 33 pmol L−1 sEH were used in the reaction vessel. This was demonstrated by ranking ten compounds by their activity; in the fluorescence method all yielded IC50 ≤ 1 nmol L−1. Comparison of 13 inhibitors with IC50 values >1 nmol L−1 showed a good correlation with the fluorescence method (linear correlation coefficient 0.9, slope 0.95, Spearman’s rho 0.9). For individual compounds, however, up to eightfold differences in potencies between this and the fluorescence method were obtained. Therefore, enzyme assays using natural substrate, as described here, are indispensable for reliable determination of structure–activity relationships for sEH inhibition
    corecore