1,134 research outputs found
Algebraic connections on parallel universes
For any manifold , we introduce a \ZZ -graded differential algebra
, which, in particular, is a bi-module over the associative algebra
. We then introduce the corresponding covariant differentials and
show how this construction can be interpreted in terms of Yang-Mills and Higgs
fields. This is a particular example of noncommutative geometry. It differs
from the prescription of Connes in the following way: The definition of
does not rely on a given Dirac-Yukawa operator acting on a space of spinors.Comment: 10 pages, CPT-93/PE 294
Leptonic Generation Mixing, Noncommutative Geometry and Solar Neutrino Fluxes
Triangular mass matrices for neutrinos and their charged partners contain
full information on neutrino mixing in a most concise form. Although the scheme
is general and model independent, triangular matrices are typical for reducible
but indecomposable representations of graded Lie algebras which, in turn, are
characteristic for the standard model in noncommutative geometry. The mixing
matrix responsible for neutrino oscillations is worked out analytically for two
and three lepton families. The example of two families fixes the mixing angle
to just about what is required by the Mikheyev-Smirnov-Wolfenstein resonance
oscillation of solar neutrinos. In the case of three families we classify all
physically plausible choices for the neutrino mass matrix and derive
interesting bounds on some of the moduli of the mixing matrix.Comment: LaTeX, 12 page
Sweeping the Space of Admissible Quark Mass Matrices
We propose a new and efficient method of reconstructing quark mass matrices
from their eigenvalues and a complete set of mixing observables. By a
combination of the principle of NNI (nearest neighbour interaction) bases which
are known to cover the general case, and of the polar decomposition theorem
that allows to convert arbitrary nonsingular matrices to triangular form, we
achieve a parameterization where the remaining freedom is reduced to one
complex parameter. While this parameter runs through the domain bounded by a
circle with radius R determined by the up-quark masses around the origin in the
complex plane one sweeps the space of all mass matrices compatible with the
given set of data.Comment: 18 page
Relativistic calculations of pionic and kaonic atoms hyperfine structure
We present the relativistic calculation of the hyperfine structure in pionic
and kaonic atoms. A perturbation method has been applied to the Klein-Gordon
equation to take into account the relativistic corrections. The perturbation
operator has been obtained \textit{via} a multipole expansion of the nuclear
electromagnetic potential. The hyperfine structure of pionic and kaonic atoms
provide an additional term in the quantum electrodynamics calculation of the
energy transition of these systems. Such a correction is required for a recent
measurement of the pion mass
Modeling core collapse supernovae in 2 and 3 dimensions with spectral neutrino transport
The overwhelming evidence that the core collapse supernova mechanism is
inherently multidimensional, the complexity of the physical processes involved,
and the increasing evidence from simulations that the explosion is marginal
presents great computational challenges for the realistic modeling of this
event, particularly in 3 spatial dimensions. We have developed a code which is
scalable to computations in 3 dimensions which couples PPM Lagrangian with
remap hydrodynamics [1], multigroup, flux-limited diffusion neutrino transport
[2], with many improvements), and a nuclear network [3]. The neutrino transport
is performed in a ray-by-ray plus approximation wherein all the lateral effects
of neutrinos are included (e.g., pressure, velocity corrections, advection)
except the transport. A moving radial grid option permits the evolution to be
carried out from initial core collapse with only modest demands on the number
of radial zones. The inner part of the core is evolved after collapse along
with the rest of the core and mantle by subcycling the lateral evolution near
the center as demanded by the small Courant times. We present results of 2-D
simulations of a symmetric and an asymmetric collapse of both a 15 and an 11 M
progenitor. In each of these simulations we have discovered that once the
oxygen rich material reaches the shock there is a synergistic interplay between
the reduced ram pressure, the energy released by the burning of the shock
heated oxygen rich material, and the neutrino energy deposition which leads to
a revival of the shock and an explosion.Comment: 10 pages, 3 figure
Isospin Character of the Pygmy Dipole Resonance in 124Sn
The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn
with the (a,a'g) coincidence method at E=136 MeV. The comparison with results
of photon-scattering experiments reveals a splitting into two components with
different structure: one group of states which is excited in (a,a'g) as well as
in (g,g') reactions and a group of states at higher energies which is only
excited in (g,g') reactions. Calculations with the self-consistent relativistic
quasiparticle time-blocking approximation and the quasiparticle phonon model
are in qualitative agreement with the experimental results and predict a
low-lying isoscalar component dominated by neutron-skin oscillations and a
higher-lying more isovector component on the tail of the giant dipole
resonance
The Interaction of Quantum Gravity with Matter
The interaction of (linearized) gravitation with matter is studied in the
causal approach up to the second order of perturbation theory. We consider the
generic case and prove that gravitation is universal in the sense that the
existence of the interaction with gravitation does not put new constraints on
the Lagrangian for lower spin fields. We use the formalism of quantum off-shell
fields which makes our computation more straightforward and simpler.Comment: 25 page
Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 M_sun star
Supernova models with a full spectral treatment of the neutrino transport are
presented, employing the Prometheus/Vertex neutrino-hydrodynamics code with a
``ray-by-ray plus'' approximation for treating two- (or three-) dimensional
problems. The method is described in detail and critically assessed with
respect to its capabilities, limitations, and inaccuracies in the context of
supernova simulations. In this first paper of a series, 1D and 2D core-collapse
calculations for a (nonrotating) 15 M_sun star are discussed, uncertainties in
the treatment of the equation of state -- numerical and physical -- are tested,
Newtonian results are compared with simulations using a general relativistic
potential, bremsstrahlung and interactions of neutrinos of different flavors
are investigated, and the standard approximation in neutrino-nucleon
interactions with zero energy transfer is replaced by rates that include
corrections due to nucleon recoil, thermal motions, weak magnetism, and nucleon
correlations. Models with the full implementation of the ``ray-by-ray plus''
spectral transport were found not to explode, neither in spherical symmetry nor
in 2D with a 90 degree lateral wedge. The success of previous 2D simulations
with grey, flux-limited neutrino diffusion can therefore not be confirmed.
Omitting the radial velocity terms in the neutrino momentum equation leads to
``artificial'' explosions by increasing the neutrino energy density in the
convective gain layer by about 20--30% and thus the integral neutrino energy
deposition in this region by about a factor of two. (abbreviated)Comment: 46 pages plus 13 pages online material; 49 figures; referee's
comments included, version accepted by Astronomy & Astrophysic
Shell evolution of stable N = 50-56 Zr and Mo nuclei with respect to low-lying octupole excitations
For the N = 50-56 zirconium (Z = 40) and molybdenum (Z = 42) isotopes, the evolution of subshells is evaluated by extracting the effective single-particle energies from available particle-transfer data. The extracted systematic evolution of neutron subshells and the systematics of the excitation energy of the octupole phonons provide evidence for type-II shape coexistence in the Zr isotopes. Employing a simplistic approach, the relative effective single-particle energies are used to estimate whether the formation of low-lying octupole-isovector excitations is possible at the proposed energies. The results raise doubts about this assignment
Mass Bounds on a Very Light Neutralino
Within the Minimal Supersymmetric Standard Model (MSSM) we systematically
investigate the bounds on the mass of the lightest neutralino. We allow for
non-universal gaugino masses and thus even consider massless neutralinos, while
assuming in general that R-parity is conserved. Our main focus are laboratory
constraints. We consider collider data, precision observables, and also rare
meson decays to very light neutralinos. We then discuss the astrophysical and
cosmological implications. We find that a massless neutralino is allowed by all
existing experimental data and astrophysical and cosmological observations.Comment: 36 pages, 13 figures, minor modification in astro-physical bounds.
EPJC versio
- …
