626 research outputs found

    On resonant scatterers as a factor limiting carrier mobility in graphene

    Full text link
    We show that graphene deposited on a substrate has a non-negligible density of atomic scale defects. This is evidenced by a previously unnoticed D peak in the Raman spectra with intensity of about 1% with respect to the G peak. We evaluated the effect of such impurities on electron transport by mimicking them with hydrogen adsorbates and measuring the induced changes in both mobility and Raman intensity. If the intervalley scatterers responsible for the D peak are monovalent, their concentration is sufficient to account for the limited mobilities achievable in graphene on a substrate.Comment: version 2: several comments are taken into account and refs adde

    A self-consistent theory for graphene transport

    Full text link
    We demonstrate theoretically that most of the observed transport properties of graphene sheets at zero magnetic field can be explained by scattering from charged impurities. We find that, contrary to common perception, these properties are not universal but depend on the concentration of charged impurities nimpn_{\rm imp}. For dirty samples (250×1010cm2<nimp<400×1010cm2250 \times 10^{10} {\rm cm}^{-2} < n_{\rm imp} < 400 \times 10^{10} {\rm cm}^{-2}), the value of the minimum conductivity at low carrier density is indeed 4e2/h4 e^2/h in agreement with early experiments, with weak dependence on impurity concentration. For cleaner samples, we predict that the minimum conductivity depends strongly on nimpn_{\rm imp}, increasing to 8e2/h8 e^2/h for nimp20×1010cm2n_{\rm imp} \sim 20 \times 10^{10}{\rm cm}^{-2}. A clear strategy to improve graphene mobility is to eliminate charged impurities or use a substrate with a larger dielectric constant.Comment: To be published in Proc. Natl. Acad. Sci. US

    Unconventional quantum Hall effect and Berry’s phase 2pi in bilayer graphene.

    Get PDF
    There are known two distinct types of the integer quantum Hall effect. One is the conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems, and the other is its relativistic counterpart recently observed in graphene, where charge carriers mimic Dirac fermions characterized by Berry’s phase pi, which results in a shifted positions of Hall plateaus. Here we report a third type of the integer quantum Hall effect. Charge carriers in bilayer graphene have a parabolic energy spectrum but are chiral and exhibit Berry’s phase 2pi affecting their quantum dynamics. The Landau quantization of these fermions results in plateaus in Hall conductivity at standard integer positions but the last (zero-level) plateau is missing. The zero-level anomaly is accompanied by metallic conductivity in the limit of low concentrations and high magnetic fields, in stark contrast to the conventional, insulating behavior in this regime. The revealed chiral fermions have no known analogues and present an intriguing case for quantum-mechanical studies

    Thickness Estimation of Epitaxial Graphene on SiC using Attenuation of Substrate Raman Intensity

    Full text link
    A simple, non-invasive method using Raman spectroscopy for the estimation of the thickness of graphene layers grown epitaxially on silicon carbide (SiC) is presented, enabling simultaneous determination of thickness, grain size and disorder using the spectra. The attenuation of the substrate Raman signal due to the graphene overlayer is found to be dependent on the graphene film thickness deduced from X-ray photoelectron spectroscopy and transmission electron microscopy of the surfaces. We explain this dependence using an absorbing overlayer model. This method can be used for mapping graphene thickness over a region and is capable of estimating thickness of multilayer graphene films beyond that possible by XPS and Auger electron spectroscopy (AES).Comment: 14 pages, 9 figure

    Impurity-assisted tunneling in graphene

    Full text link
    The electric conductance of a strip of undoped graphene increases in the presence of a disorder potential, which is smooth on atomic scales. The phenomenon is attributed to impurity-assisted resonant tunneling of massless Dirac fermions. Employing the transfer matrix approach we demonstrate the resonant character of the conductivity enhancement in the presence of a single impurity. We also calculate the two-terminal conductivity for the model with one-dimensional fluctuations of disorder potential by a mapping onto a problem of Anderson localization.Comment: 6 pages, 3 figures, final version, typos corrected, references adde

    Models of electron transport in single layer graphene

    Full text link
    The main features of the conductivity of doped single layer graphene are analyzed, and models for different scattering mechanisms are presented.Comment: 15 pages. Submitted to the Proceedings of the ULTI symposium on Quantum Phenomena and Devices at Low Temperatures, Espoo, Finland, to be published in the Journ. of Low. Temp. Phy

    Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes

    Get PDF
    As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics. © 2012 American Chemical Society

    Graphene plasmonics: A platform for strong light-matter interaction

    Get PDF
    Graphene plasmons provide a suitable alternative to noble-metal plasmons because they exhibit much larger confinement and relatively long propagation distances, with the advantage of being highly tunable via electrostatic gating. We report strong light- matter interaction assisted by graphene plasmons, and in particular, we predict unprecedented high decay rates of quantum emitters in the proximity of a carbon sheet, large vacuum Rabi splitting and Purcell factors, and extinction cross sections exceeding the geometrical area in graphene ribbons and nanometer-sized disks. Our results provide the basis for the emerging and potentially far-reaching field of graphene plasmonics, offering an ideal platform for cavity quantum electrodynamics and supporting the possibility of single-molecule, single-plasmon devices.Comment: 39 pages, 15 figure

    Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout

    Full text link
    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the MHz range. The strong dependence of the resonant frequency on applied gate voltage can be fit to a membrane model, which yields the mass density and built-in strain. Upon removal and addition of mass, we observe changes in both the density and the strain, indicating that adsorbates impart tension to the graphene. Upon cooling, the frequency increases; the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, these studies lay the groundwork for applications, including high-sensitivity mass detectors

    Strong Suppression of Electrical Noise in Bilayer Graphene Nano Devices

    Full text link
    Low-frequency 1/f noise is ubiquitous, and dominates the signal-to-noise performance in nanodevices. Here we investigate the noise characteristics of single-layer and bilayer graphene nano-devices, and uncover an unexpected 1/f noise behavior for bilayer devices. Graphene is a single layer of graphite, where carbon atoms form a 2D honeycomb lattice. Despite the similar composition, bilayer graphene (two graphene monolayers stacked in the natural graphite order) is a distinct 2D system with a different band structure and electrical properties. In graphene monolayers, the 1/f noise is found to follow Hooge's empirical relation with a noise parameter comparable to that of bulk semiconductors. However, this 1/f noise is strongly suppressed in bilayer graphene devices, and exhibits an unusual dependence on the carrier density, different from most other materials. The unexpected noise behavior in graphene bilayers is associated with its unique band structure that varies with the charge distribution among the two layers, resulting in an effective screening of potential fluctuations due to external impurity charges. The findings here point to exciting opportunities for graphene bilayers in low-noise applications
    corecore