626 research outputs found
On resonant scatterers as a factor limiting carrier mobility in graphene
We show that graphene deposited on a substrate has a non-negligible density
of atomic scale defects. This is evidenced by a previously unnoticed D peak in
the Raman spectra with intensity of about 1% with respect to the G peak. We
evaluated the effect of such impurities on electron transport by mimicking them
with hydrogen adsorbates and measuring the induced changes in both mobility and
Raman intensity. If the intervalley scatterers responsible for the D peak are
monovalent, their concentration is sufficient to account for the limited
mobilities achievable in graphene on a substrate.Comment: version 2: several comments are taken into account and refs adde
A self-consistent theory for graphene transport
We demonstrate theoretically that most of the observed transport properties
of graphene sheets at zero magnetic field can be explained by scattering from
charged impurities. We find that, contrary to common perception, these
properties are not universal but depend on the concentration of charged
impurities . For dirty samples (), the value of the minimum
conductivity at low carrier density is indeed in agreement with early
experiments, with weak dependence on impurity concentration. For cleaner
samples, we predict that the minimum conductivity depends strongly on , increasing to for . A clear strategy to improve graphene mobility is to eliminate
charged impurities or use a substrate with a larger dielectric constant.Comment: To be published in Proc. Natl. Acad. Sci. US
Unconventional quantum Hall effect and Berry’s phase 2pi in bilayer graphene.
There are known two distinct types of the integer quantum Hall effect. One is the conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems, and the other is its relativistic counterpart recently observed in graphene, where charge carriers mimic Dirac fermions characterized by Berry’s phase pi, which results in a shifted positions of Hall plateaus. Here we report a third type of the integer quantum Hall effect. Charge carriers in bilayer graphene have a parabolic energy spectrum but are chiral and exhibit Berry’s phase 2pi affecting their quantum dynamics. The Landau quantization of these fermions results in plateaus in Hall conductivity at standard integer positions but the last (zero-level) plateau is missing. The zero-level anomaly is accompanied by metallic conductivity in the limit of low concentrations and high magnetic fields, in stark contrast to the conventional, insulating behavior in this regime. The revealed chiral fermions have no known analogues and present an intriguing case for quantum-mechanical studies
Thickness Estimation of Epitaxial Graphene on SiC using Attenuation of Substrate Raman Intensity
A simple, non-invasive method using Raman spectroscopy for the estimation of
the thickness of graphene layers grown epitaxially on silicon carbide (SiC) is
presented, enabling simultaneous determination of thickness, grain size and
disorder using the spectra. The attenuation of the substrate Raman signal due
to the graphene overlayer is found to be dependent on the graphene film
thickness deduced from X-ray photoelectron spectroscopy and transmission
electron microscopy of the surfaces. We explain this dependence using an
absorbing overlayer model. This method can be used for mapping graphene
thickness over a region and is capable of estimating thickness of multilayer
graphene films beyond that possible by XPS and Auger electron spectroscopy
(AES).Comment: 14 pages, 9 figure
Impurity-assisted tunneling in graphene
The electric conductance of a strip of undoped graphene increases in the
presence of a disorder potential, which is smooth on atomic scales. The
phenomenon is attributed to impurity-assisted resonant tunneling of massless
Dirac fermions. Employing the transfer matrix approach we demonstrate the
resonant character of the conductivity enhancement in the presence of a single
impurity. We also calculate the two-terminal conductivity for the model with
one-dimensional fluctuations of disorder potential by a mapping onto a problem
of Anderson localization.Comment: 6 pages, 3 figures, final version, typos corrected, references adde
Models of electron transport in single layer graphene
The main features of the conductivity of doped single layer graphene are
analyzed, and models for different scattering mechanisms are presented.Comment: 15 pages. Submitted to the Proceedings of the ULTI symposium on
Quantum Phenomena and Devices at Low Temperatures, Espoo, Finland, to be
published in the Journ. of Low. Temp. Phy
Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes
As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics. © 2012 American Chemical Society
Graphene plasmonics: A platform for strong light-matter interaction
Graphene plasmons provide a suitable alternative to noble-metal plasmons
because they exhibit much larger confinement and relatively long propagation
distances, with the advantage of being highly tunable via electrostatic gating.
We report strong light- matter interaction assisted by graphene plasmons, and
in particular, we predict unprecedented high decay rates of quantum emitters in
the proximity of a carbon sheet, large vacuum Rabi splitting and Purcell
factors, and extinction cross sections exceeding the geometrical area in
graphene ribbons and nanometer-sized disks. Our results provide the basis for
the emerging and potentially far-reaching field of graphene plasmonics,
offering an ideal platform for cavity quantum electrodynamics and supporting
the possibility of single-molecule, single-plasmon devices.Comment: 39 pages, 15 figure
Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout
The enormous stiffness and low density of graphene make it an ideal material
for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and
electrical readout of monolayer graphene resonators, and test their response to
changes in mass and temperature. The devices show resonances in the MHz range.
The strong dependence of the resonant frequency on applied gate voltage can be
fit to a membrane model, which yields the mass density and built-in strain.
Upon removal and addition of mass, we observe changes in both the density and
the strain, indicating that adsorbates impart tension to the graphene. Upon
cooling, the frequency increases; the shift rate can be used to measure the
unusual negative thermal expansion coefficient of graphene. The quality factor
increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing
many of the basic attributes of monolayer graphene resonators, these studies
lay the groundwork for applications, including high-sensitivity mass detectors
Strong Suppression of Electrical Noise in Bilayer Graphene Nano Devices
Low-frequency 1/f noise is ubiquitous, and dominates the signal-to-noise
performance in nanodevices. Here we investigate the noise characteristics of
single-layer and bilayer graphene nano-devices, and uncover an unexpected 1/f
noise behavior for bilayer devices. Graphene is a single layer of graphite,
where carbon atoms form a 2D honeycomb lattice. Despite the similar
composition, bilayer graphene (two graphene monolayers stacked in the natural
graphite order) is a distinct 2D system with a different band structure and
electrical properties. In graphene monolayers, the 1/f noise is found to follow
Hooge's empirical relation with a noise parameter comparable to that of bulk
semiconductors. However, this 1/f noise is strongly suppressed in bilayer
graphene devices, and exhibits an unusual dependence on the carrier density,
different from most other materials. The unexpected noise behavior in graphene
bilayers is associated with its unique band structure that varies with the
charge distribution among the two layers, resulting in an effective screening
of potential fluctuations due to external impurity charges. The findings here
point to exciting opportunities for graphene bilayers in low-noise
applications
- …
