273 research outputs found

    Application of protein structure alignments to iterated hidden Markov model protocols for structure prediction.

    Get PDF
    BackgroundOne of the most powerful methods for the prediction of protein structure from sequence information alone is the iterative construction of profile-type models. Because profiles are built from sequence alignments, the sequences included in the alignment and the method used to align them will be important to the sensitivity of the resulting profile. The inclusion of highly diverse sequences will presumably produce a more powerful profile, but distantly related sequences can be difficult to align accurately using only sequence information. Therefore, it would be expected that the use of protein structure alignments to improve the selection and alignment of diverse sequence homologs might yield improved profiles. However, the actual utility of such an approach has remained unclear.ResultsWe explored several iterative protocols for the generation of profile hidden Markov models. These protocols were tailored to allow the inclusion of protein structure alignments in the process, and were used for large-scale creation and benchmarking of structure alignment-enhanced models. We found that models using structure alignments did not provide an overall improvement over sequence-only models for superfamily-level structure predictions. However, the results also revealed that the structure alignment-enhanced models were complimentary to the sequence-only models, particularly at the edge of the "twilight zone". When the two sets of models were combined, they provided improved results over sequence-only models alone. In addition, we found that the beneficial effects of the structure alignment-enhanced models could not be realized if the structure-based alignments were replaced with sequence-based alignments. Our experiments with different iterative protocols for sequence-only models also suggested that simple protocol modifications were unable to yield equivalent improvements to those provided by the structure alignment-enhanced models. Finally, we found that models using structure alignments provided fold-level structure assignments that were superior to those produced by sequence-only models.ConclusionWhen attempting to predict the structure of remote homologs, we advocate a combined approach in which both traditional models and models incorporating structure alignments are used

    Structural Evolution of the Protein Kinase–Like Superfamily

    Get PDF
    The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase–like superfamily. The comparison of structures revealed a “universal core” domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase–like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called “atypical kinases” are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, α-kinases and phosphatidylinositol phosphate kinases (PIPKs), appear to have distinct evolutionary histories. While the PIPKs probably have an evolutionary relationship with the rest of the kinase superfamily, the relationship appears to be very distant (and perhaps indirect). Conversely, the α-kinases appear to be an exception to the scenario of early divergence for the atypical kinases: they apparently arose relatively recently in eukaryotes. We present possible scenarios for the derivation of the α-kinases from an extant kinase fold

    Determinanten sozialer Entscheidungsprozesse – der Einfluss von sozio-kontextuellen Faktoren und Persönlichkeitseigenschaften auf altruistisches Verhalten, Fairness und Kooperation in experimentellen Spielparadigmen

    Get PDF
    Im Rahmen dieser Dissertation wurden in drei Studien verschiedene Aspekte sozialer Entscheidungsprozesse vor dem Hintergrund unterschiedlicher sozio-kontextueller und individueller Charakteristika erforscht. Studie 1 untersuchte bei gesunden Personen, inwiefern sich das Auslösen von Empathie auf altruistisches Verhalten auswirkt. Dabei konnte erstmals nachgewiesen werden, dass das psychologische Konzept der Empathie auch in ökonomischen Interaktionen einen Einfluss haben kann. In Studie 2 wurden gesunde Individuen und inhaftierte Gewaltstraftäter verglichen. Dabei war es von Interesse inwiefern sich das kooperative Verhalten dieser beiden Populationen durch sozio-kontextuelle Faktoren in Form von Gruppenzugehörigkeit und Reziprozität beeinflussen ließen. Studie 3 untersuchte, ob gesunde Personen und inhaftierte Gewaltstraftäter unterschiedlich auf Fairnessnormverletzungen in einem Gruppenkontext reagieren. Es konnte in Studie 2 und 3 ein erheblicher Einfluss dieser sozio-kontextueller und individueller Charakteristika auf die soziale Entscheidungsfindung nachgewiesen werden, wobei hervorzuheben ist, dass sowohl gesunde wie auch dissoziale Individuen gleichermaßen von diesen Faktoren beeinflusst wurden. Die referierten Befunde werden im Rahmen dieser Arbeit in einer Gesamtdiskussion in die bestehende Literatur eingeordnet und diskutiert

    Totalsynthese von Archazolid F und Strukturanaloga

    Get PDF
    In dieser Arbeit werden synthetische Studien zur Totalsynthese von Archazolid F und biologisch aktiven Strukturanaloga vorgestellt. Seit ihrer Isolierung spielten die Archazolide eine wichtige Rolle in der Erforschung der Inhibierung von V-ATPase. Für ein besseres Verständnis der biologischen Aktivität und der Strukturwirkungsbeziehungen wurde ein neuer synthetischer Zugang zum polyketidischen Grundgerüst über eine Ringschlussmetathese (RCM) entwickelt und für die Totalsynthese von Archazolid F, sowie für die Synthese neuer Strukturanaloga verwendet. Neben Archazolid F konnten so zwei neuartige Strukturanaloga totalsynthetisch dargestellt werden, sowie drei weitere Analoga semisynthetisch. Diese Arbeit beschreibt damit die erste Totalsynthese von Archazolid F sowie weitere synthetische Arbeiten zur Synthese polyketidischer Makrozyklen

    Combinatorial Clustering of Residue Position Subsets Predicts Inhibitor Affinity across the Human Kinome

    Get PDF
    The protein kinases are a large family of enzymes that play fundamental roles in propagating signals within the cell. Because of the high degree of binding site similarity shared among protein kinases, designing drug compounds with high specificity among the kinases has proven difficult. However, computational approaches to comparing the 3-dimensional geometry and physicochemical properties of key binding site residue positions have been shown to be informative of inhibitor selectivity. The Combinatorial Clustering Of Residue Position Subsets (CCORPS) method, introduced here, provides a semi-supervised learning approach for identifying structural features that are correlated with a given set of annotation labels. Here, CCORPS is applied to the problem of identifying structural features of the kinase ATP binding site that are informative of inhibitor binding. CCORPS is demonstrated to make perfect or near-perfect predictions for the binding affinity profile of 8 of the 38 kinase inhibitors studied, while only having overall poor predictive ability for 1 of the 38 compounds. Additionally, CCORPS is shown to identify shared structural features across phylogenetically diverse groups of kinases that are correlated with binding affinity for particular inhibitors; such instances of structural similarity among phylogenetically diverse kinases are also shown to not be rare among kinases. Finally, these function-specific structural features may serve as potential starting points for the development of highly specific kinase inhibitors

    Short Promoters in Viral Vectors Drive Selective Expression in Mammalian Inhibitory Neurons, but do not Restrict Activity to Specific Inhibitory Cell-Types

    Get PDF
    Short cell-type specific promoter sequences are important for targeted gene therapy and studies of brain circuitry. We report on the ability of short promoter sequences to drive fluorescent protein expression in specific types of mammalian cortical inhibitory neurons using adeno-associated virus (AAV) and lentivirus (LV) vectors. We tested many gene regulatory sequences derived from fugu (Takifugu rubripes), mouse, human, and synthetic composite regulatory elements. All fugu compact promoters expressed in mouse cortex, with only the somatostatin (SST) and the neuropeptide Y (NPY) promoters largely restricting expression to GABAergic neurons. However these promoters did not control expression in inhibitory cells in a subtype specific manner. We also tested mammalian promoter sequences derived from genes putatively coexpressed or coregulated within three major inhibitory interneuron classes (PV, SST, VIP). In contrast to the fugu promoters, many of the mammalian sequences failed to express, and only the promoter from gene A930038C07Rik conferred restricted expression, although as in the case of the fugu sequences, this too was not inhibitory neuron subtype specific. Lastly and more promisingly, a synthetic sequence consisting of a composite regulatory element assembled with PAX6 E1.1 binding sites, NRSE and a minimal CMV promoter showed markedly restricted expression to a small subset of mostly inhibitory neurons, but whose commonalities are unknown

    How the vertebrates were made: selective pruning of a double-duplicated genome

    Get PDF
    Vertebrates are the result of an ancient double duplication of the genome. A new study published in BMC Biology explores the selective retention of genes after this event, finding an extensive enrichment of signaling proteins and transcription factors. Analysis of their expression patterns, interactions and subsequent history reflect the forces that drove their evolution, and with it the evolution of vertebrate complexity

    ALADYN: a web server for aligning proteins by matching their large-scale motion

    Get PDF
    The ALADYN web server aligns pairs of protein structures by comparing their internal dynamics and detecting regions that sustain similar large-scale movements. The latter often accompany functional conformational changes in proteins and enzymes. The ALADYN dynamics-based alignment can therefore highlight functionally-oriented correspondences that could be more elusive to sequence- or structure-based comparisons. The ALADYN server takes the structure files of the two proteins as input. The optimal relative positioning of the molecules is found by maximizing the similarity of the pattern of structural fluctuations which are calculated via an elastic network model. The resulting alignment is presented via an interactive graphical Java applet and is accompanied by a number of quantitative indicators and downloadable data files. The ALADYN web server is freely accessible at the http://aladyn.escience-lab.org address

    Genomics, evolution, and crystal structure of a new family of bacterial spore kinases

    Get PDF
    Bacterial spore formation is a complex process of fundamental relevance to biology and human disease. The spore coat structure is complex and poorly understood, and the roles of many of the protein components remain unclear. We describe a new family of spore coat proteins, the bacterial spore kinases (BSKs), and the first crystal structure of a BSK, YtaA (CotI) from Bacillus subtilis. BSKs are widely distributed in spore-forming Bacillus and Clostridium species, and have a dynamic evolutionary history. Sequence and structure analyses indicate that the BSKs are CAKs, a prevalent group of small molecule kinases in bacteria that is distantly related to the eukaryotic protein kinases. YtaA has substantial structural similarity to CAKs, but also displays distinctive features that broaden our understanding of the CAK group. Evolutionary constraint analysis of the protein surfaces indicates that members of the BSK family have distinct clade-conserved patterns in the substrate binding region, and probably bind and phosphorylate distinct targets. Several classes of BSKs have apparently independently lost catalytic activity to become pseudokinases, indicating that the family also has a major noncatalytic function. Proteins 2010. © 2009 Wiley-Liss, Inc
    corecore