314 research outputs found
The mismeasure of ape social cognition
In his classic analysis, The Mismeasure of Man, Gould (1981) demolished the idea that intelligence was an inherent, genetic trait of different human groups by emphasizing, among other things, (a) its sensitivity to environmental input, (b) the incommensurate pre-test preparation of different human groups, and (c) the inadequacy of the testing contexts, in many cases. According to Gould, the root cause of these oversights was confirmation bias by psychometricians, an unwarranted commitment to the idea that intelligence was a fixed, immutable quality of people. By virtue of a similar, systemic interpretive bias, in the last two decades, numerous contemporary researchers in comparative psychology have claimed human superiority over apes in social intelligence, based on two-group comparisons between postindustrial, Western Europeans and captive apes, where the apes have been isolated from European styles of social interaction, and tested with radically different procedures. Moreover, direct comparisons of humans with apes suffer from pervasive lapses in argumentation: Research designs in wide contemporary use are inherently mute about the underlying psychological causes of overt behavior. Here we analyze these problems and offer a more fruitful approach to the comparative study of social intelligence, which focuses on specific individual learning histories in specific ecological circumstances
X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases
Lateral distribution of muons in IceCube cosmic ray events
In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high p(T) (>2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard p(T) component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations.R. Abbasi ... G. C. Hill ... et al. (IceCube Collaboration
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Long-term disability in neuromyelitis optica spectrum disorder with a history of myelitis is associated with age at onset, delay in diagnosis/preventive treatment, MRI lesion length and presence of symptomatic brain lesions
BACKGROUND:Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the central nervous system (CNS) that preferentially targets the spinal cord and optic nerves. Increasing disability is accrued with each inflammatory attack. Disability has been shown to be an independent predictor of poor quality of life in those with NMOSD. Factors associated with increasing disability need further systematic investigation. METHODS:We performed a multi-center retrospective chart analysis of aquaporin-4 (AQP4) seropositive NMOSD patients with a history of myelitis seen at five large referral centers for patients with NMOSD worldwide for whom thorough records including relapse history and corresponding imaging were available. Potential contributors to long-term disability were extracted including demographics, radiographic findings, and clinical characteristics. Multivariable regression modeling was conducted to determine correlates of disability in patients with NMOSD, as measured by the Expanded Disability Status Scale (EDSS). RESULTS:One hundred eighty-two AQP4 seropositive patients (88% female) were included in this analysis. Multiple regression modeling revealed that older age at disease onset, delay in diagnosis/preventive treatment, length of longest acute myelitis lesion and presence of symptomatic brain/brainstem lesions were associated with increased disability when holding other variables constant. CONCLUSION:While age at onset is a factor that cannot be controlled in NMOSD, we can reduce the delay in diagnosis/preventive treatment and reduce future relapses in the brain/brainstem and spinal cord. Delay in diagnosis/preventive treatment and imaging variables that contributed to increased disability support the need for improved measures for early, accurate diagnosis and management of NMOSD, and aggressive treatment of acute relapses
Chronic Myeloid Leukemia Stem Cell Biology
Leukemia progression and relapse is fueled by leukemia stem cells (LSC) that are resistant to current treatments. In the progression of chronic myeloid leukemia (CML), blast crisis progenitors are capable of adopting more primitive but deregulated stem cell features with acquired resistance to targeted therapies. This in turn promotes LSC behavior characterized by aberrant self-renewal, differentiation, and survival capacity. Multiple reports suggest that cell cycle alterations, activation of critical signaling pathways, aberrant microenvironmental cues from the hematopoietic niche, and aberrant epigenetic events and deregulation of RNA processing may facilitate the enhanced survival and malignant transformation of CML progenitors. Here we review the molecular evolution of CML LSC that promotes CML progression and relapse. Recent advances in these areas have identified novel targets that represent important avenues for future therapeutic approaches aimed at selectively eradicating the LSC population while sparing normal hematopoietic progenitors in patients suffering from chronic myeloid malignancies
Missing value imputation improves clustering and interpretation of gene expression microarray data
<p>Abstract</p> <p>Background</p> <p>Missing values frequently pose problems in gene expression microarray experiments as they can hinder downstream analysis of the datasets. While several missing value imputation approaches are available to the microarray users and new ones are constantly being developed, there is no general consensus on how to choose between the different methods since their performance seems to vary drastically depending on the dataset being used.</p> <p>Results</p> <p>We show that this discrepancy can mostly be attributed to the way in which imputation methods have traditionally been developed and evaluated. By comparing a number of advanced imputation methods on recent microarray datasets, we show that even when there are marked differences in the measurement-level imputation accuracies across the datasets, these differences become negligible when the methods are evaluated in terms of how well they can reproduce the original gene clusters or their biological interpretations. Regardless of the evaluation approach, however, imputation always gave better results than ignoring missing data points or replacing them with zeros or average values, emphasizing the continued importance of using more advanced imputation methods.</p> <p>Conclusion</p> <p>The results demonstrate that, while missing values are still severely complicating microarray data analysis, their impact on the discovery of biologically meaningful gene groups can – up to a certain degree – be reduced by using readily available and relatively fast imputation methods, such as the Bayesian Principal Components Algorithm (BPCA).</p
Single-channel properties of a stretch-sensitive chloride channel in the human mast cell line HMC-1
A stretch-activated (SA) Cl− channel in the plasma membrane of the human mast cell line HMC-1 was identified in outside-out patch-clamp experiments. SA currents, induced by pressure applied to the pipette, exhibited voltage dependence with strong outward rectification (55.1 pS at +100 mV and an about tenfold lower conductance at −100 mV). The probability of the SA channel being open (Po) also showed steep outward rectification and pressure dependence. The open-time distribution was fitted with three components with time constants of τ1o = 755.1 ms, τ2o = 166.4 ms, and τ3o = 16.5 ms at +60 mV. The closed-time distribution also required three components with time constants of τ1c = 661.6 ms, τ2c = 253.2 ms, and τ3c = 5.6 ms at +60 mV. Lowering extracellular Cl− concentration reduced the conductance, shifted the reversal potential toward chloride reversal potential, and decreased the Po at positive potentials. The SA Cl− currents were reversibly blocked by the chloride channel blocker 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) but not by (Z)-1-(p-dimethylaminoethoxyphenyl)-1,2-diphenyl-1-butene (tamoxifen). Furthermore, in HMC-1 cells swelling due to osmotic stress, DIDS could inhibit the increase in intracellular [Ca2+] and degranulation. We conclude that in the HMC-1 cell line, the SA outward currents are mediated by Cl− influx. The SA Cl− channel might contribute to mast cell degranulation caused by mechanical stimuli or accelerate membrane fusion during the degranulation process
Expression and Localization of CLC Chloride Transport Proteins in the Avian Retina
Members of the ubiquitously expressed CLC protein family of chloride channels and transporters play important roles in regulating cellular chloride and pH. The CLCs that function as Cl−/H+ antiporters, ClCs 3–7, are essential in particular for the acidification of endosomal compartments and protein degradation. These proteins are broadly expressed in the nervous system, and mutations that disrupt their expression are responsible for several human genetic diseases. Furthermore, knock-out of ClC3 and ClC7 in the mouse result in the degeneration of the hippocampus and the retina. Despite this evidence of their importance in retinal function, the expression patterns of different CLC transporters in different retinal cell types are as yet undescribed. Previous work in our lab has shown that in chicken amacrine cells, internal Cl− can be dynamic. To determine whether CLCs have the potential to participate, we used PCR and immunohistochemical techniques to examine CLC transporter expression in the chicken retina. We observed a high level of variation in the retinal expression levels and patterns among the different CLC proteins examined. These findings, which represent the first systematic investigation of CLC transporter expression in the retina, support diverse functions for the different CLCs in this tissue
Comparative cytogenetics of Carnegiella marthae and Carnegiella strigata (Characiformes, Gasteropelecidae) and description of a ZZ/ZW sex chromosome system
- …
