16 research outputs found
The Interplay of Variants Near LEKR and CCNL1 and Social Stress in Relation to Birth Size
Background
We previously identified via a genome wide association study variants near LEKR and CCNL1 and in the ADCY5 genes lead to lower birthweight. Here, we study the impact of these variants and social stress during pregnancy, defined as social adversity and neighborhood disparity, on infant birth size. We aimed to determine whether the addition of genetic variance magnified the observed associations.
Methodology/Principal Findings
We analyzed data from the Northern Finland Birth Cohort 1986 (n = 5369). Social adversity was defined by young maternal age (<20 years), low maternal education (<11 years), and/or single marital status. Neighborhood social disparity was assessed by discrepancy between neighborhoods relative to personal socio-economic status. These variables are indicative of social and socioeconomic stress, but also of biological risk. The adjusted multiple regression analysis showed smaller birth size in both infants of mothers who experienced social adversity (birthweight by −40.4 g, 95%CI −61.4, −19.5; birth length −0.14 cm, 95%CI −0.23, −0.05; head circumference −0.09 cm 95%CI −0.15, −0.02) and neighborhood disparity (birthweight −28.8 g, 95%CI −47.7, −10.0; birth length −0.12 cm, 95%CI −0.20, −0.05). The birthweight-lowering risk allele (SNP rs900400 near LEKR and CCNL1) magnified this association in an additive manner. However, likely due to sample size restriction, this association was not significant for the SNP rs9883204 in ADCY5. Birth size difference due to social stress was greater in the presence of birthweight-lowering alleles.
Conclusions/Significance
Social adversity, neighborhood disparity, and genetic variants have independent associations with infant birth size in the mutually adjusted analyses. If the newborn carried a risk allele rs900400 near LEKR/CCNL1, the impact of stress on birth size was stronger. These observations give support to the hypothesis that individuals with genetic or other biological risk are more vulnerable to environmental influences. Our study indicates the need for further research to understand the mechanisms by which genes impact individual vulnerability to environmental insults
Mycorrhizal fungi suppress aggressive Agricultural weeds.
Plant growth responses to arbuscular mycorrhizal fungi (AMF) are highly variable, ranging from mutualism in a wide range of plants, to antagonism in some non-mycorrhizal plant species and plants characteristic of disturbed environments. Many agricultural weeds are non mycorrhizal or originate from ruderal environments where AMF are rare or absent. This led us to hypothesize that AMF may suppress weed growth, a mycorrhizal attribute which has hardly been considered. We investigated the impact of AMF and AMF diversity (three versus one AMF taxon) on weed growth in experimental microcosms where a crop (sunflower) was grown together with six widespread weed species. The presence of AMF reduced total weed biomass with 47% in microcosms where weeds were grown together with sunflower and with 25% in microcosms where weeds were grown alone. The biomass of two out of six weed species was significantly reduced by AMF (-66% & -59%) while the biomass of the four remaining weed species was only slightly reduced (-20% to -37%). Sunflower productivity was not influenced by AMF or AMF diversity. However, sunflower benefitted from AMF via enhanced phosphorus nutrition. The results indicate that the stimulation of arbuscular mycorrhizal fungi in agro-ecosystems may suppress some aggressive weeds
Dispersal and microsite limitation of a rare alpine plant
Knowledge on the limitation of plant species’ distributions is important for preserving alpine biodiversity, particularly when the loss of alpine habitats because of global warming or land use changes is faster than colonization of new habitats. We investigated the potential of the rare alpine plant Campanula thyrsoides L. to colonize grassland sites of different suitability on a small mountain plateau in the Swiss Alps. A total of 15 experimental sites were selected according to their differences in habitat suitability for adult C. thyrsoides, which was measured by the Beals index. At each site we applied a disturbance treatment, added seeds at different densi- ties and monitored the survival of seedlings over two consecutive years. The number of surviving seedlings was not positively related to habitat suitability for adult C. thyrsoides. Furthermore, C. thyrsoides appears to be strongly dispersal limited at the regional scale because seed addition to unoccupied habitats resulted in successful germination and survival of seedlings. Since an increase of seed density in already occupied sites did not affect the number of seedlings, we suggest that C. thyrsoides is microsite limited at the local scale. Microsite limitation is supported by the result that seedling survival of the species was enhanced in vegetation gaps created by disturbance. We conclude E. S. Frei (&) J. F. Scheepens, J. Sto ̈cklin Section of Plant Ecology, Institute of Botany, University of Basel, Scho ̈nbeinstrasse 6, 4056 Basel, Switzerland e-mail: [email protected] that C. thyrsoides may become endangered in the future if environmental changes cause local extinction of populations. An appropriate management, such as a disturbance regime for enhancing recruitment in existing populations, may ensure the long-term sur- vival of this rare alpine plant species
